Overcoming scale-up challenges for nanostructured photoelectrodes via one-step interface engineering
Scaling up photoelectrochemical (PEC) devices for green hydrogen production is a significant challenge that requires robust and cost-effective production methods. In this study, hematite photoelectrodes has been synthesized using a cost-effective polymeric precursor solution, resulting in homogeneous ultra-thin films (~125 nm) with areas up to 200 cm2. We observed a substantial photocurrent drop as photoelectrode area increases, addressed by modifying the precursor solution with Hf4+. This modification improves the morphology and films adherence, leading to simultaneous grain|grain interface segregation and a modified FTO|hematite interface. As a result, film conductivity increases, reducing the photocurrent drop at larger photoelectrode areas. The improved charge separation and surface charge injection efficiencies allows a homogeneous photocurrent of 1.6 mA cm⁻2 at 1.45V across a 15.75 m2 electrode area, using less than 70 μg of photoactive material. Cost analysis study indicates that this low-energy fabrication method is a significant step forward in green hydrogen production, contributing to sustainable and efficient green hydrogen technologies.
more »
« less
An official website of the United States government

