skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fast Quantum State Discrimination with Nonlinear Positive Trace‐Preserving Channels
Abstract Models of nonlinear quantum computation based on deterministic positive trace‐preserving (PTP) channels and evolution equations are investigated. The models are defined in any finite Hilbert space, but the main results are for dimension . For every normalizable linear or nonlinear positive map ϕ on bounded linear operatorsX, there is an associated normalized PTP channel . Normalized PTP channels include unitary mean field theories, such as the Gross–Pitaevskii equation for interacting bosons, as well as models of linear and nonlinear dissipation. They classify into four types, yielding three distinct forms of nonlinearity whose computational power are explored. In the qubit case, these channels support Bloch ball torsion and other distortions studied previously, where it has been shown that such nonlinearity can be used to increase the separation between a pair of close qubit states, suggesting an exponential speedup for state discrimination. Building on this idea, the authors argue that this operation can be made robust to noise by using dissipation to induce a bifurcation to a novel phase where a pair of attracting fixed points create an intrinsically fault‐tolerant nonlinear state discriminator.  more » « less
Award ID(s):
2152159
PAR ID:
10516782
Author(s) / Creator(s):
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Quantum Technologies
Volume:
6
Issue:
6
ISSN:
2511-9044
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Any stater= (x,y,z) of a qubit, written in the Pauli basis and initialized in the pure stater= (0, 0, 1), can be prepared by composing three quantum operations: two unitary rotation gates to reach a pure state r = x 2 + y 2 + z 2 1 2 × ( x , y , z ) on the Bloch sphere, followed by a depolarization gate to decrease ∣r∣. Here we discuss the complementary state-preparation protocol for qubits initialized at the center of the Bloch ball,r=0, based on increasing or amplifying ∣r∣ to its desired value, then rotating. Bloch vector amplification increases purity and decreases entropy. Amplification can be achieved with a linear Markovian completely positive trace-preserving (CPTP) channel by placing the channel’s fixed point away fromr=0, making it nonunital, but the resulting gate suffers from a critical slowing down as that fixed point is approached. Here we consider alternative designs based on linear and nonlinear Markovian PTP channels, which offer benefits relative to linear CPTP channels, namely fast Bloch vector amplification without deceleration. These gates simulate a reversal of the thermodynamic arrow of time for the qubit and would provide striking experimental demonstrations of non-CP dynamics. 
    more » « less
  2. Abstract Nonlinear qubit master equations have recently been shown to exhibit rich dynamical phenomena such as period doubling, Hopf bifurcation, and strange attractors usually associated with classical nonlinear systems. Here we investigate nonlinear qubit models that support tunable Lorenz attractors. A Lorenz qubit could be realized experimentally by combining qubit torsion, generated by real or simulated mean field dynamics, with linear amplification and dissipation. This would extend engineered Lorenz systems to the quantum regime, allowing for their direct experimental study and possible application to quantum information processing. 
    more » « less
  3. Abstract Nonlinear optics plays an important role in many areas of science and technology. The advance of nonlinear optics is empowered by the discovery and utilization of materials with growing optical nonlinearity. Here we demonstrate an indium gallium phosphide (InGaP) integrated photonics platform for broadband, ultra-efficient second-order nonlinear optics. The InGaP nanophotonic waveguide enables second-harmonic generation with a normalized efficiency of 128, 000%/W/cm2at 1.55μm pump wavelength, nearly two orders of magnitude higher than the state of the art in the telecommunication C band. Further, we realize an ultra-bright, broadband time-energy entangled photon source with a pair generation rate of 97 GHz/mW and a bandwidth of 115 nm centered at the telecommunication C band. The InGaP entangled photon source shows high coincidence-to-accidental counts ratio CAR > 104and two-photon interference visibility > 98%. The InGaP second-order nonlinear photonics platform will have wide-ranging implications for non-classical light generation, optical signal processing, and quantum networking. 
    more » « less
  4. Abstract In previous work of the authors, we investigated the Born and inverse Born series for a scalar wave equation with linear and nonlinear terms, the nonlinearity being cubic of Kerr type (DeFilippiset al2023Inverse Problems39125015). We reported conditions which guarantee convergence of the inverse Born series, enabling recovery of the coefficients of the linear and nonlinear terms. In this work, we show that if the coefficient of the linear term is known, an arbitrarily strong Kerr nonlinearity can be reconstructed, for sufficiently small data. Additionally, we show that similar convergence results hold for general polynomial nonlinearities. Our results are illustrated with numerical examples. 
    more » « less
  5. Abstract We study tidal dissipation in hot Jupiter host stars due to the nonlinear damping of tidally driveng-modes, extending the calculations of Essick & Weinberg to a wide variety of stellar host types. This process causes the planet’s orbit to decay and has potentially important consequences for the evolution and fate of hot Jupiters. Previous studies either only accounted for linear dissipation processes or assumed that the resonantly excited primary mode becomes strongly nonlinear and breaks as it approaches the stellar center. However, the great majority of hot Jupiter systems are in the weakly nonlinear regime in which the primary mode does not break but instead excites a sea of secondary modes via three-mode interactions. We simulate these nonlinear interactions and calculate the net mode dissipation for stars that range in mass from 0.5M≤M≤ 2.0Mand in age from the early main sequence to the subgiant phase. We find that the nonlinearly excited secondary modes can enhance the tidal dissipation by orders of magnitude compared to linear dissipation processes. For the stars withM≲ 1.0Mof nearly any age, we find that the orbital decay time is ≲100 Myr for orbital periodsPorb≲ 1 day. ForM≳ 1.2M, the orbital decay time only becomes short on the subgiant branch, where it can be ≲10 Myr forPorb≲ 2 days and result in significant transit time shifts. We discuss these results in the context of known hot Jupiter systems and examine the prospects for detecting their orbital decay with transit timing measurements. 
    more » « less