Intrusion detection systems are a commonly deployed defense that examines network traffic, host operations, or both to detect attacks. However, more attacks bypass IDS defenses each year, and with the sophistication of attacks increasing as well, we must examine new perspectives for intrusion detection. Current intrusion detection systems focus on known attacks and/or vulnerabilities, limiting their ability to identify new attacks, and lack the visibility into all system components necessary to confirm attacks accurately, particularly programs. To change the landscape of intrusion detection, we propose that future IDSs track how attacks evolve across system layers by adapting the concept of attack graphs. Attack graphs were proposed to study how multi-stage attacks could be launched by exploiting known vulnerabilities. Instead of constructing attacks reactively, we propose to apply attack graphs proactively to detect sequences of events that fulfill the requirements for vulnerability exploitation. Using this insight, we examine how to generate modular attack graphs automatically that relate adversary accessibility for each component, called its attack surface, to flaws that provide adversaries with permissions that create threats, called attack states, and exploit operations from those threats, called attack actions. We evaluate the proposed approach by applying it to two case studies: (1) attacks on file retrieval, such as TOCTTOU attacks, and (2) attacks propagated among processes, such as attacks on Shellshock vulnerabilities. In these case studies, we demonstrate how to leverage existing tools to compute attack graphs automatically and assess the effectiveness of these tools for building complete attack graphs. While we identify some research areas, we also find several reasons why attack graphs can provide a valuable foundation for improving future intrusion detection systems.
more »
« less
PROV5GC: Hardening 5G Core Network Security with Attack Detection and Attribution Based on Provenance Graphs
As 5G networks become part of the critical infrastructures whose dysfunctions can cause severe damages to society, their security has been increasingly scrutinized. Recent works have revealed multiple specification-level flaws in 5G core networks but there are no easy solutions to patch the vulnerabilities in practice. Against this backdrop, this work proposes a unified framework called PROV5GC to detect and attribute various attacks that exploit these vulnerabilities in real-world 5G networks. PROV5GC tackles three technical challenges faced when deploying existing intrusion detection system (IDS) frameworks to protect 5G core networks, namely, message encryption, partial observability, and identity ephemerality. The key idea of PROV5GC is to use provenance graphs, which are constructed from the communication messages logged by various 5G core network functions. Based on these graphs, PROV5GC infers the original call flows to identify those with malicious intentions. We demonstrate how PROV5GC can be used to detect three different kinds of attacks, which aim to compromise the confidentiality, integrity, and/or availability of 5G core networks. We build a prototype of PROV5GC and evaluate its execution performance on commodity cluster servers. We observe that due to stateless instrumentation, the logging overhead incurred to each network function is low. We also show that PROV5GC can be used to detect the three 5G-specific attacks with high accuracy.
more »
« less
- Award ID(s):
- 1943079
- PAR ID:
- 10516796
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Proceedings of the 17th ACM Conference on Security and Privacy in Wireless and Mobile Networks (WISEC'24), Seoul, Korea, May 2024.
- ISBN:
- 9798400705823
- Page Range / eLocation ID:
- 254 to 264
- Subject(s) / Keyword(s):
- 5G networks, provenance graphs, attack detection and attribution
- Format(s):
- Medium: X
- Location:
- Seoul Republic of Korea
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
As 5G networks are gradually rolled out worldwide, it is important to ensure that their network infrastructures are resilient against malicious attacks. This work presents VET5G, a new virtual end-to-end testbed for 5G network security research experiments or training activities such as Capture-The-Flag competitions. The distinguishing features of VET5G include a home-grown 5G core network emulator written in Rust to ensure memory and thread safety, integration of OpenAirInterface’s Radio Access Network emulator and the official Android emulator to achieve full end-to-end 5G network emulation, inclusion of a reference P4 software switch to assist with prototyping of defense mechanisms for 5G data planes, implementation of Python APIs for easy 5G network experimentation, and adoption of JupyterHub to support multi-user experimentation. In our experiments we demonstrate how to use VET5G for two attack scenarios in 5G networks as well as its performance when it is used in a 5G hacking project for a Mobile Systems Security course.more » « less
-
A vehicular communication network allows vehicles on the road to be connected by wireless links, providing road safety in vehicular environments. Vehicular communication network is vulnerable to various types of attacks. Cryptographic techniques are used to prevent attacks such as message modification or vehicle impersonation. However, cryptographic techniques are not enough to protect against insider attacks where an attacking vehicle has already been authenticated in the network. Vehicular network safety services rely on periodic broadcasts of basic safety messages (BSMs) from vehicles in the network that contain important information about the vehicles such as position, speed, received signal strength (RSSI) etc. Malicious vehicles can inject false position information in a BSM to commit a position falsification attack which is one of the most dangerous insider attacks in vehicular networks. Position falsification attacks can lead to traffic jams or accidents given false position information from vehicles in the network. A misbehavior detection system (MDS) is an efficient way to detect such attacks and mitigate their impact. Existing MDSs require a large amount of features which increases the computational complexity to detect these attacks. In this paper, we propose a novel grid-based misbehavior detection system which utilizes the position information from the BSMs. Our model is tested on a publicly available dataset and is applied using five classification algorithms based on supervised learning. Our model performs multi-classification and is found to be superior compared to other existing methods that deal with position falsification attacks.more » « less
-
null (Ed.)Deep learning methods for graphs achieve remarkable performance across a variety of domains. However, recent findings indicate that small, unnoticeable perturbations of graph structure can catastrophically reduce performance of even the strongest and most popular Graph Neural Networks (GNNs). Here, we develop GNNGuard, a general algorithm to defend against a variety of training-time attacks that perturb the discrete graph structure. GNNGuard can be straight-forwardly incorporated into any GNN. Its core principle is to detect and quantify the relationship between the graph structure and node features, if one exists, and then exploit that relationship to mitigate negative effects of the attack.GNNGuard learns how to best assign higher weights to edges connecting similar nodes while pruning edges between unrelated nodes. The revised edges allow for robust propagation of neural messages in the underlying GNN. GNNGuard introduces two novel components, the neighbor importance estimation, and the layer-wise graph memory, and we show empirically that both components are necessary for a successful defense. Across five GNNs, three defense methods, and five datasets,including a challenging human disease graph, experiments show that GNNGuard outperforms existing defense approaches by 15.3% on average. Remarkably, GNNGuard can effectively restore state-of-the-art performance of GNNs in the face of various adversarial attacks, including targeted and non-targeted attacks, and can defend against attacks on heterophily graphs.more » « less
-
Modern vehicles can be thought of as complex distributed embedded systems that run a variety of automotive applications with real-time constraints. Recent advances in the automotive industry towards greater autonomy are driving vehicles to be increasingly connected with various external systems (e.g., roadside beacons, other vehicles), which makes emerging vehicles highly vulnerable to cyber-attacks. Additionally, the increased complexity of automotive applications and the in-vehicle networks results in poor attack visibility, which makes detecting such attacks particularly challenging in automotive systems. In this work, we present a novel anomaly detection framework called LATTE to detect cyber-attacks in Controller Area Network (CAN) based networks within automotive platforms. Our proposed LATTE framework uses a stacked Long Short Term Memory (LSTM) predictor network with novel attention mechanisms to learn the normal operating behavior at design time. Subsequently, a novel detection scheme (also trained at design time) is used to detect various cyber-attacks (as anomalies) at runtime. We evaluate our proposed LATTE framework under different automotive attack scenarios and present a detailed comparison with the best-known prior works in this area, to demonstrate the potential of our approach.more » « less
An official website of the United States government

