Abstract We examine provenance data collected from three types of geological resources recovered at Goat Spring Pueblo in central New Mexico. Our goal is to move beyond simply documenting patterns in compositional data; rather, we develop a narrative that explores how people's knowledge and preferences resulted in culturally and materially determined choices as revealed in those patterns. Our analyses provide evidence that residents of Goat Spring Pueblo did not rely primarily on local geological sources for the creation of their glaze paints or obsidian tools. They did, however, utilize a locally available blue-green mineral for creation of their ornaments. We argue that village artisans structured their use of raw materials at least in part according to multiple craft-specific and community-centered ethnomineralogies that likely constituted the sources of these materials as historically or cosmologically meaningful places through their persistent use. Consequently, the surviving material culture at Goat Spring Pueblo reflects day-to-day beliefs, practices, and social relationships that connected this village to a broader mosaic of interconnected Ancestral Pueblo taskscapes and knowledgescapes.
more »
« less
Obsidian on the Island: First Geochemical Characterization for Isla Victoria, Nahuel Huapi National Park (Patagonia, Argentina)
Abstract We present the first geochemical data of archaeological obsidian for Isla Victoria, Nahuel Huapi National Park in Patagonia. XRF analyses were performed on 15 samples of obsidian-like rocks from the Puerto Tranquilo 1 site. Only five of the artifacts—all of which come from upper levels of the site—correspond to obsidian as a raw material. The provenance analysis indicates the use of obsidian sources located in the Andean Forest area of southern Neuquen Province. Based on these preliminary results, we propose a north–south circulation axis for this raw material. These geographic results are discussed in relation to the information available regionally.
more »
« less
- Award ID(s):
- 2208558
- PAR ID:
- 10516884
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Latin American Antiquity
- ISSN:
- 1045-6635
- Page Range / eLocation ID:
- 1 to 6
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Northwestern Patagonia is located in a tectonically active part of the southern Andes (Argentina), which has facilitated the formation of obsidian, including pyroclastic deposits that have been affected by geomorphic processes, resulting in a complex obsidian landscape. To date, the geomorphic relocation of obsidian in the landscape has not been a focus of systematic research, and this hampers our understanding of prehistoric human mobility. We present an updated assessment of the regional availability of different obsidian types based on results from our research program, which combines geoarchaeological survey and geochemical characterization to understand the properties and distribution of obsidian. This robust “source‐scape” provides the foundation for reconstructing patterns of lithic provisioning and discard. Our results suggest that interpretations of obsidian availability across the landscape should be more nuanced than is typically acknowledged. Based on our improved “source‐scape,” we discuss the patterns observed in an archaeological X‐ray fluorescence database. When compared with the geoarchaeological reconstruction of obsidian availability, the archaeological record conforms to a distance‐decay pattern. Contrary to previous interpretations, we suggest that the distribution of obsidian types is not isomorphic with human home ranges. This geoarchaeological research program provides a basis for integrating the archaeological record of different Andean regions.more » « less
-
Significant archaeological research has been conducted on chipped stone tools recovered from prehistoric sites throughout Eastern Europe and the Balkans. The limited number of obsidian geological sources throughout the region, combined with the relatively homogeneous nature of obsidian and the increased use of new techniques for conducting compositional analysis in the field, has facilitated in accurately sourcing obsidian artifacts from sites in the region. This article presents the compositional results of 203 obsidian artifacts recovered from seven Late Neolithic (5,000 – 4,500 BCE) sites from the Great Hungarian Plain. Compositional results of the archaeological specimens obtained with a Bruker portable X-ray fluorescence device (p-XRF) were compared with obsidian geological compositional data to determine artifact provenience. By sourcing the obsidian chipped stone tools, it is possible to reconstruct prehistoric patterns of exploitation/exchange and to note how these patterns vary throughout the Plain. The results illustrate that a majority of the studied artifacts originated from the Carpathian 1 source, however, a limited number of samples came from the Carpathian 2E and Carpathian 2T sources. Based on this preliminary study, the variation in geological source exploitation may be linked to socio-cultural practices that differentiated the Tisza and Herpály archaeological units during the Late Neolithic.more » « less
-
The adaptive shift that favored stone tool–assisted behavior in hominins began by 3.3 million years ago. However, evidence from early archaeological sites indicates relatively short-distance stone transport dynamics similar to behaviors observed in nonhuman primates. Here we report selective raw material transport over longer distances than expected at least 2.6 million years ago. Hominins at Nyayanga, Kenya, manufactured Oldowan tools primarily from diverse nonlocal stones, pushing back the date for expanded raw material transport by over half a million years. Nonlocal cobbles were transported up to 13 kilometers for on-site reduction, resulting in assemblage patterns inconsistent with accumulations formed by repeated short-distance transport events. These findings demonstrate that early toolmakers moved stones over substantial distances, possibly in anticipation of food processing needs, representing the earliest archaeologically visible signal for the incorporation of lithic technology into landscape-scale foraging repertoires.more » « less
-
null (Ed.)Abstract Dense, glassy pyroclasts found in products of explosive eruptions are commonly employed to investigate volcanic conduit processes through measurement of their volatile inventories. This approach rests upon the tacit assumption that the obsidian clasts are juvenile, that is, genetically related to the erupting magma. Pyroclastic deposits within the Yellowstone-Snake River Plain province almost without exception contain dense, glassy clasts, previously interpreted as hyaloclastite, while other lithologies, including crystallised rhyolite, are extremely rare. We investigate the origin of these dense, glassy clasts from a coupled geochemical and textural perspective combining literature data and case studies from Cougar Point Tuff XIII, Wolverine Creek Tuff, and Mesa Falls Tuff spanning 10 My of silicic volcanism. These results indicate that the trace elemental compositions of the dense glasses mostly overlap with the vesiculated component of each deposit, while being distinct from nearby units, thus indicating that dense glasses are juvenile. Textural complexity of the dense clasts varies across our examples. Cougar Point Tuff XIII contains a remarkable diversity of clast appearances with the same glass composition including obsidian-within-obsidian clasts. Mesa Falls Tuff contains clasts with the same glass compositions but with stark variations in phenocryst content (0 to 45%). Cumulatively, our results support a model where most dense, glassy clasts reflect conduit material that passed through multiple cycles of fracturing and sintering with concurrent mixing of glass and various crystal components. This is in contrast to previous interpretations of these clasts as entrained hyaloclastite and relaxes the requirement for water-magma interaction within the eruptive centres of the Yellowstone-Snake River Plain province.more » « less
An official website of the United States government

