Research Experience for Undergraduates (REU) programs have been credited for attracting and retaining students in science and engineering who otherwise may not have considered disciplines in science and engineering as their career choices. In addition to core research activities, REU programs generally provide multiple enrichment and professional development activities for participants. While the nature and the number of professional development activities vary from one REU program to another, the most common activities include ethics and safety training, research and industry seminars, GRE workshops, writing workshops, graduate school application preparation, and industry visits. Furthermore, some of these professional development activities are also conducted in large group settings with students from other research programs beyond the REU cohort. The rationale behind combining REU students with other researchers is to create a community of learners and provide them with an opportunity to build/extend their professional network. Although professional development activities are an integral part of the REU sites, there is often very limited coverage of such activities in the existing literature on REU projects. This paper presents the impact of professional development activities on the experience of REU participants in a manufacturing REU site at a major research university in the southwestern United States. For this study, data was collected from participants by an external evaluator by using both qualitative and quantitative methods. This paper presents and describes the cumulative data from three REU cohorts. The analysis and results of the data are disaggregated by the student academic level (sophomore, junior, senior), gender, ethnicity, the type of their home institutions (research or teaching institution), and desired career paths in the future (graduate school or industry). The paper also provides a detailed discussion and implications of these findings.
more »
« less
Board 405: The REU Site in Nanotechnology for Health, Energy and the Environment: Best Practices for Enhancing Research Skills, Professional Development, and Diversity
For the past twelve years, the REU Site in Nanotechnology for Health, Energy and the Environment has been supported at Stony Brook University in New York State. Over the years, we have been fortunate to have had the opportunity to develop and pilot workshops, panels and presentations that supported the professional development of our scholars and the advancement of research skills, while providing opportunities for students from a wide range of institutions (including community colleges), educational levels (including many first and second year students), academic majors, and demographic backgrounds. Having a history of feedback via surveys and interviews by our external reviewer from over 120 participants allows us to analyze the effectiveness of summer activities as the program has continued to evolve. Tracking personal identifiable data has allowed us to follow former participants and document their academic and professional outcomes for years after. In addition, we report on the results of recruitment activities which have resulted in an increasingly diverse cohort of participants (over 55% of our REU scholars have been female and more than 35% have members of underrepresented minority populations). The role of mentors, targeted outreach, and other factors which can positively impact diversity and inclusiveness will also be discussed. Combining all of the evidence and information provided by our tracking systems has delivered significant insight which can inform the development of effective undergraduate research opportunities, and assist in identifying best practices for continuous improvement of our ongoing REU program site.
more »
« less
- Award ID(s):
- 1950645
- PAR ID:
- 10516887
- Publisher / Repository:
- ASEE Conferences PEER
- Date Published:
- Journal Name:
- ASEE annual conference proceedings
- Edition / Version:
- 1
- ISSN:
- 1524-4857
- Subject(s) / Keyword(s):
- REU undergraduate research STEM diversity
- Format(s):
- Medium: X Size: 881 kB Other: pdf
- Size(s):
- 881 kB
- Location:
- Baltimore , Maryland
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper summarizes the best practices and lessons learned from organizing an effective remote REU Site during COVID-19. Our REU Site is a three-year program that is designed to offer closely-mentored summer research experience to a cohort of ten students in each of the three years. COVID-19 has disrupted our site by forcing us to split our second cohort to two groups, two students in summer 2020 and seven students in summer 2021. However, the experience that we gained in summer 2020 by mentoring the two students virtually online has provided us with the confidence that a virtual REU Site with a larger group can be as effective as in person and on campus. To further improve the quality of our REU Site in the on-line mode, we have applied multiple novel practices. Specifically, before the start of the 2021 REU site we as the site co-directors proactively worked with mentors to better understand the needs of the defined research projects. Subsequently, we tailored the topics covered by the crash course of our site to the needs of the research projects as well as purposefully increasing active learning activities and student interactions. In lieu of the previous in-person bond building activity (a two-day high rope course in a nearby camp), we added virtual scavenger image hunt in orientation and game nights every Wednesday. During the ten weeks, we also organized a half-hour daily check-in and check-out in the morning and afternoon respectively, through which students got ample opportunities to speak in a group setting about their own accomplishments and challenges for the day as well as their plans for the next day. Moreover, a PhD pathways panel and several professional development seminars on Graduate School and the research process were successfully organized to motivate students to pursue a research career. To facilitate communication, our site adopted multiple software tools (slack, google calendar, zoom, and moodle). An independent evaluator evaluated our program through online pre- and post-program surveys for both students and mentors as well as a focus group discussion with students. The evaluation report indicates significant improvement from the summer 2021 site regarding student satisfaction compared to the previous summer 2019 on-site program. Detailed quantitative analysis and lessons learned from the report will be presented in this paper to offer valuable experience and best practices for organizing effective cohort-based undergraduate research programs.more » « less
-
Participating in a research experience for undergraduates (REU) site provides opportunities for students to develop their research and technical skills, network with other REU students/professors, raise their awareness of graduate studies, and understand the social context of research. In support of this mission, our REU site at the University of Alabama is exploring research at the intersection of engineering and communicative disorders. Beyond research training though, an REU site provides the opportunity for professional development, social activities, and cultural activities to enrich the student experience. These are important features of an REU, which typically range from 9-10 weeks. Students that participate in summer REUs are recruited from around the country and are brought together at a central research site. Each student brings with them their unique perspectives and lived experiences. To form a cohesive cohort from the individual students, it is important to facilitate shared experiences early in their 9-10 week REU. Supporting the development of a student community through shared experiences has a significant impact on student perspectives of the program. Shared experiences also provide the opportunity to increase the students’ understanding of the new city/state/region that is the setting for the REU. The 2019 iteration of our REU Site, which has a theme of developing technology to support clinical practice in the field of communicative sciences and disorders, aimed to increase the level of social and cultural activities of the cohort in comparison to previous REU sites on campus. This was achieved with multiple professional development, cultural, and social activities. For professional development, students participated in a Practicing Inclusive Engagement workshop to build skills for intercultural engagement that in turn foster a more inclusive REU cohort. Students participated in this workshop within the first three days of arriving on campus. This workshop focused on identity, inclusive language, and creative ways to invite and engage in diverse perspectives. For cultural activities, full-day field trips were taken to the U.S. Space & Rocket Center in Huntsville, AL and The Legacy Museum / The National Memorial for Peace and Justice in Montgomery, AL. These trips engaged students in very different aspects of Alabama's history. One showcasing achievements of the U.S. space and rocket program and the other investigating the racial injustice in American history and its legacy. While many of the students were familiar with these histories, the museums and their compelling visuals and data-rich exhibits provided a far deeper insight into these topics and facilitated further conversation between the REU cohort. The REU cohort spent much of their summer learning with and from graduate students enrolled in the masters of speech-language pathology (SLP) program at the University of Alabama. At the end of the summer experience, a BBQ event was facilitated (food, yard games) to spur on friendly competition between REU and SLP students. This provided both groups an informal opportunity to debrief about the summer experiences. In this work an overview of the REU site will be provided with a focus on the logistical elements to pilot the social, cultural and professional development efforts, a summary of the student feedback from the written reflections and focus groups, experiences of the program coordinators, and future plans to refine and improve these elements will be presented.more » « less
-
Opportunities for undergraduate research in STEM programs at community colleges can be few where lower-division science curriculum emphasizes classroom and laboratory-based learning and research laboratories are limited in number. This is particularly true in the geosciences where specialized programs are extremely rare. Urban serving academic research institutions have a unique role and opportunity to partner with regional community college programs for undergraduate research early-on in student post-secondary educational experiences. Programs built for community college transfer students to urban serving undergraduate programs can serve to integrate students into major programs and help reduce transfer shock. The benefits of exploring research as an undergraduate scholar are numerous and include: building towards mastery of technical skills; developing problem-solving in a real-world environment; reading and digesting scientific literature; analyzing experimental and simulation data; working independently and as part of a team; developing a mentoring relationship with a research advisor; and building a sense of belonging and confidence in a scientific field. However, many undergraduate research internships are targeted towards junior-level STEM majors already engaged in upper-division coursework and considering graduate school which effectively excludes community college students from participating. The Center for Climate and Aerosol Research (CCAR) Research Experience for Undergraduate program at Portland State University serves to help build the future diverse research community. 10-week intern research experiences are paired with an expert faculty mentor are designed for students majoring in the natural/physical sciences but not necessarily with a background in climate or atmospheric science. Additional programmatic activities include: 1-week orientation and training using short courses, faculty research seminars, and hands-on group workshops; academic professional and career development workshops throughout summer; journal club activities; final presentations at end of summer CCAR symposium; opportunities for travel for student presentations at scientific conferences; and social activities. Open to all qualifying undergraduates, since 2014 the program recruits primarily from regional (Northwest) community colleges, rural schools, and Native American serving institutions; recruiting students who would be unlikely to be otherwise exposed to such opportunities at their home institution. Over the past 9 cohorts of REU interns (2014-2019), approximately one third of CCAR REU scholars are community colleges students. Here we present criteria employed for selection of REU scholars and an analysis of selection biases in a comparison of students from community colleges, 4-year colleges, and PhD granting universities. We further investigate differential outcomes in efficacy of the REU program using evaluation data to assess changes over the program including: knowledge, intrinsic motivation, extrinsic motivation, science identity, program satisfaction, and career aspirations. In this presentation, we present these findings along with supportive qualitative analyses and discuss their implications for community college students in undergraduate research programs in geosciences.more » « less
-
The population of students in Puerto Rico that has enrolled in higher education within the last six years has been severely affected by a compound effect of the many major humanitarian crises, including a deteriorated economy since the 2006 Great Recession, Hurricanes Irma and Maria in 2017, earthquakes in 2019 and 2020, the ongoing COVID-19 pandemic since 2020, and Hurricane Fiona in 2022. To ensure that students can cope with the aftermath of these natural disasters, the following programs were conceived: The Ecosystem to Expand Capabilities and Opportunities for STEM-Scholars (EECOS), the Resilient Infrastructure and Sustainability Education Undergraduate Program (RISE-UP) and The Noyce Teacher Scholars Program – (NoTeS), all three programs are funded by the National Science Foundation. EECOS developed a support ecosystem that consists of three elements: academic support, socio-emotional support, and financial support. NoTeS. provides talented Hispanic low-socioeconomic bilingual undergraduate or recently graduated STEM majors and professionals up to two years of scholarship funding as well as academic and professional support as they complete the requirements to obtain teacher certification to become K-12 math and science teachers. This program seeks to increase the number of K-12 teachers with strong STEM content knowledge to fill the need for teachers in high-need school districts. RISE-UP was conceptualized to educate architecture and engineering students to work in interdisciplinary teams to provide resilient and sustainable design and construction solutions to infrastructure challenges. To date, EECOS has directly impacted XX students and graduated XXX students. NoTeS has helped nineteen scholars and ten affiliates (participants of the activities without the scholarship) partake. Eight of the nine alums scholars now work as math or science teachers in a high-needs school. RISE-UP has had 127 scholars who are enrolled or have completed the RISE-UP curricular sequence. This paper provides effective practices and a baseline characterization that universities can use to help students overcome the effects of natural disasters and promote student success using ecosystems of support that expand capabilities and opportunities, particularly for STEM scholars.more » « less