Process-based numerical simulation, includ- ing for climate modeling applications, is compute- and resource-intensive, requiring extensive customization and hand-engineering for encoding governing equations and other domain knowledge. On the other hand, modern deep learning employs a much simplified and efficient computational workflow, and has been showing impres- sive results across myriad applications in computational sciences. In this work, we investigate the potential of deep generative learning models, specifically conditional Gen- erative Adversarial Networks (cGANs), to simulate the output of a physics-based model of the spatial distribution of the water content of mountain snowpack, or snow water equivalent (SWE). We show preliminary results indicating that the cGANs model is able to learn map- pings between meteorological forcing (e.g., minimum and maximum temperature, wind speed, net radiation, and precipitation) and SWE output. Moreover, informing the model with simple domain-inspired physical constraints results in higher model accuracy, and lower training time. Thus Physics-Informed cGANs provide a means for fast and accurate SWE modeling that can have significant impact in a variety of applications (e.g., hydropower forecasting, agriculture, and water supply management).
more »
« less
Combining Empirical and Physics-Based Models for Solar Wind Prediction
Solar wind modeling is classified into two main types: empirical models and physics-based models, each designed to forecast solar wind properties in various regions of the heliosphere. Empirical models, which are cost-effective, have demonstrated significant accuracy in predicting solar wind at the L1 Lagrange point. On the other hand, physics-based models rely on magnetohydrodynamics (MHD) principles and demand more computational resources. In this research paper, we build upon our recent novel approach that merges empirical and physics-based models. Our recent proposal involves the creation of a new physics-informed neural network that leverages time series data from solar wind predictors to enhance solar wind prediction. This innovative method aims to combine the strengths of both modeling approaches to achieve more accurate and efficient solar wind predictions. In this work, we show the variability of the proposed physics-informed loss across multiple deep learning models. We also study the effect of training the models on different solar cycles on the model’s performance. This work represents the first effort to predict solar wind by integrating deep learning approaches with physics constraints and analyzing the results across three solar cycles. Our findings demonstrate the superiority of our physics-constrained model over other unconstrained deep learning predictive models.
more »
« less
- PAR ID:
- 10516992
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Universe
- Volume:
- 10
- Issue:
- 5
- ISSN:
- 2218-1997
- Page Range / eLocation ID:
- 191
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent advancements in physics-informed machine learning have contributed to solving partial differential equations through means of a neural network. Following this, several physics-informed neural network works have followed to solve inverse problems arising in structural health monitoring. Other works involving physics-informed neural networks solve the wave equation with partial data and modeling wavefield data generator for efficient sound data generation. While a lot of work has been done to show that partial differential equations can be solved and identified using a neural network, little work has been done the same with more basic machine learning (ML) models. The advantage with basic ML models is that the parameters learned in a simpler model are both more interpretable and extensible. For applications such as ultrasonic nondestructive evaluation, this interpretability is essential for trustworthiness of the methods and characterization of the material system under test. In this work, we show an interpretable, physics-informed representation learning framework that can analyze data across multiple dimensions (e.g., two dimensions of space and one dimension of time). The algorithm comes with convergence guarantees. In addition, our algorithm provides interpretability of the learned model as the parameters correspond to the individual solutions extracted from data. We demonstrate how this algorithm functions with wavefield videos.more » « less
-
The Sun emits a stream of charged particles called the solar wind, which is the primary driver of space weather and geomagnetic disturbances. Modeling and observations complement each other to help us identify and understand the physical processes governing the solar wind dynamics on different scales. Numerical models of the solar wind have greatly improved in recent years with advances in computational infrastructure and by employing data-driven or data-assimilative approaches. Designed primarily for modeling the partially ionized space plasma using adaptive mesh refinement technique on Cartesian or spherical grids, the Multi-scale Fluid-kinetic Simulation Suite (MS-FLUKSS) is arguably one of the most sophisticated numerical codes for simulating the solar wind flow. To inform potential users and interested members of the space weather community, we present a brief summary of the current state of the solar wind models developed in the MS-FLUKSS framework, with an emphasis on the 3D heliospheric MHD models driven and constrained by remote/in situ observations and empirical coronal models such as the Wang-Sheeley-Arge model. We also discuss potential scientific and operational applications of our solar wind models on prediction of space weather (e.g., high speed streams, coronal mass ejections, and interplanetary shocks) throughout the solar system.more » « less
-
NA (Ed.)Deep learning models have achieved remarkable accuracy for structural response modeling. However, these models heavily depend on having a sufficient amount of training data, which can be challenging and time-consuming to collect. Moreover, data-driven models sometimes struggle to adhere to physics constraints. Therefore, in this study, a physics-informed long short-term memory (PI-LSTM) network was applied to structural response modeling by incorporating physics constraints into deep learning. The physics constraints were modified to accommodate the characteristics of both linear and nonlinear cases. The PI-LSTM network, inspired by and compared with existing physics-informed deep learning models (PhyCNN and PhyLSTM), was validated using the numerical simulation results of the single-degree-of-freedom (SDOF) system and the experimental results of the six-story building. Additionally, the PI-LSTM network underwent thorough investigation and validation across the four cases of the SDOF system and numerical simulation results of the six-story building with the comparison of the regular LSTM. The results indicate that the PI-LSTM network outperformed the regular LSTM models in terms of accuracy. Furthermore, the PI-LSTM network exhibited a more concentrated and higher accuracy range when analyzing the results of both the SDOF system and the six-story building. These findings demonstrate that the PI-LSTM network presents a reliable and efficient approach for structural response modeling.more » « less
-
Abstract Uncertainties in ocean-mixing parameterizations are primary sources for ocean and climate modeling biases. Due to lack of process understanding, traditional physics-driven parameterizations perform unsatisfactorily in the tropics. Recent advances in the deep-learning method and the new availability of long-term turbulence measurements provide an opportunity to explore data-driven approaches to parameterizing oceanic vertical-mixing processes. Here, we describe a novel parameterization based on an artificial neural network trained using a decadal-long time record of hydrographic and turbulence observations in the tropical Pacific. This data-driven parameterization achieves higher accuracy than current parameterizations, demonstrating good generalization ability under physical constraints. When integrated into an ocean model, our parameterization facilitates improved simulations in both ocean-only and coupled modeling. As a novel application of machine learning to the geophysical fluid, these results show the feasibility of using limited observations and well-understood physical constraints to construct a physics-informed deep-learning parameterization for improved climate simulations.more » « less
An official website of the United States government

