Abstract We investigate the stellar mass–black hole mass ( ) relation with type 1 active galactic nuclei (AGNs) down to , corresponding to a ≃ −21 absolute magnitude in rest-frame ultraviolet, atz= 2–2.5. Exploiting the deep and large-area spectroscopic survey of the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX), we identify 66 type 1 AGNs with ranging from 107–1010M⊙that are measured with single-epoch virial method using Civemission lines detected in the HETDEX spectra. of the host galaxies are estimated from optical to near-infrared photometric data taken with Spitzer, the Wide-field Infrared Survey Explorer, and ground-based 4–8 m class telescopes byCIGALEspectral energy distribution (SED) fitting. We further assess the validity of SED fitting in two cases by host-nuclear decomposition performed through surface brightness profile fitting on spatially resolved host galaxies with the James Webb Space Telescope/NIRCam CEERS data. We obtain the relation covering the unexplored low-mass ranges of , and conduct forward modeling to fully account for the selection biases and observational uncertainties. The intrinsic relation atz∼ 2 has a moderate positive offset of 0.52 ± 0.14 dex from the local relation, suggestive of more efficient black hole growth at higher redshift even in the low-mass regime of . Our relation is inconsistent with the suppression at the low- regime predicted by recent hydrodynamic simulations at a 98% confidence level, suggesting that feedback in the low-mass systems may be weaker than those produced in hydrodynamic simulations.
more »
« less
Spin stiffness and spin excitation gap of van der Waals ferromagnetic Fe3+δGeTe2
Abstract (FGT) has proved to be an interesting van der Waals (vdW) ferromagnetic compound with a tunable Curie temperature ( ). However, the underlying mechanism for varying remains elusive. Here, we systematically investigate and compare low-temperature magnetic properties of single crystalline FGT samples that exhibit s ranging from 160 K to 205 K. Spin stiffness (D) and spin excitation gap (Δ) are extracted using Bloch’s theory for crystals with varying Fe content. Compared to Cr-based vdW ferromagnets, FGT compounds have higher spin stiffness values but lower spin wave excitation gaps. We discuss the implication of these relationships in Fe–Fe ion magnetic interactions in FGT unit cells. The itinerancy of magnetic electrons is measured and discussed under the Rhodes–Wohlfarth ratio (RWR) and the Takahashi theory.
more »
« less
- Award ID(s):
- 2338229
- PAR ID:
- 10517055
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Journal of Physics: Condensed Matter
- Volume:
- 36
- Issue:
- 38
- ISSN:
- 0953-8984
- Format(s):
- Medium: X Size: Article No. 385801
- Size(s):
- Article No. 385801
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Entanglement is an intrinsic property of quantum mechanics and is predicted to be exhibited in the particles produced at the Large Hadron Collider. A measurement of the extent of entanglement in top quark-antiquark ( ) events produced in proton–proton collisions at a center-of-mass energy of 13 TeV is performed with the data recorded by the CMS experiment at the CERN LHC in 2016, and corresponding to an integrated luminosity of 36.3 fb−1. The events are selected based on the presence of two leptons with opposite charges and high transverse momentum. An entanglement-sensitive observableDis derived from the top quark spin-dependent parts of the production density matrix and measured in the region of the production threshold. Values of are evidence of entanglement andDis observed (expected) to be ( ) at the parton level. With an observed significance of 5.1 standard deviations with respect to the non-entangled hypothesis, this provides observation of quantum mechanical entanglement within pairs in this phase space. This measurement provides a new probe of quantum mechanics at the highest energies ever produced.more » « less
-
Abstract Single crystals of the quasi-skutterudite compounds Ca3(Ir1-xRhx)4Sn13(3–4–13) were synthesized by flux growth and characterized by x-ray diffraction, energy dispersive x-ray spectroscopy, magnetization, resistivity, and radio frequency magnetic susceptibility techniques. The coexistence and competition between the charge density wave (CDW) and superconductivity was studied by varying the Rh/Ir ratio. The superconducting transition temperature, , varies from 7 K in pure Ir (x = 0) to 8.3 K in pure Rh (x = 1). Temperature-dependent electrical resistivity reveals monotonic suppression of the CDW transition temperature,TCDW(x). The CDW starts in pure Ir,x = 0, atTCDW≈ 40 K and extrapolates roughly linearly to zero at 0.53–0.58 under the superconducting dome. Magnetization and transport measurements show a significant influence of CDW on superconducting and normal states. Meissner expulsion is substantially reduced in the CDW region, indicating competition between the CDW and superconductivity. The low-temperature resistivity is higher in the CDW part of the phase diagram, consistent with the reduced density of states due to CDW gapping. Its temperature dependence just above shows signs of non-Fermi liquid behavior in a cone-like composition pattern. We conclude that the Ca3(Ir1-xRhx)4Sn13alloy is a good candidate for a composition-driven quantum critical point at ambient pressure.more » « less
-
Abstract Electroencephalograms (EEG) are invaluable for treating neurological disorders, however, mapping EEG electrode readings to brain activity requires solving a challenging inverse problem. For time series data, the use of regularization quickly becomes intractable for many solvers, and, despite the reconstruction advantages of regularization, -based approaches such as standardized low-resolution brain electromagnetic tomographysLORETAare used in practice. In this work, we formulate EEG source localization as a graphical generalized elastic net inverse problem and present avariable projectedaugmented Lagrangian algorithm (VPAL) suitable for fast EEG source localization. We prove convergence of this solver for a broad class of separable convex, potentially non-smooth functions subject to linear constraints. Leveraging the efficiency of the proposedVPALalgorithm, we introduce a windowed variation,VPAL , that computes time dynamics in sequence suitable for real-time reconstruction. Our proposed methods are compared to state-of-the-art approaches includingsLORETAand other methods for -regularized inverse problems.more » « less
-
Abstract The polarization of the cosmic microwave background is rich in information but obscured by foreground emission from the Milky Way’s interstellar medium (ISM). To uncover relationships between the underlying turbulent ISM and the foreground power spectra, we simulated a suite of driven, magnetized, turbulent models of the ISM, varying the fluid properties via the sonic Mach number, , and magnetic (Alfvén) Mach number, . We measure the power spectra of density (ρ), velocity (v), magnetic field (H), total projected intensity (T), parity-even polarization (E), and parity-odd polarization (B). We find that the slopes of all six quantities increase with . Most increase with , while the magnetic field spectrum steepens with . By comparing spectral slopes ofEandBto those measured by Planck, we infer typical values of and for the ISM. As the fluid velocity increases, , the ratio of BB power to EE power increases to approach a constant value near the Planck-observed value of ∼0.5, regardless of the magnetic field strength. We also examine correlation coefficients between projected quantities, and find thatrTE≈ 0.3, in agreement with Planck, for appropriate combinations of and . Finally, we consider parity-violating correlationsrTBandrEB.more » « less