skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A deep learning-based strategy for producing dense 3D segmentations from sparsely annotated 2D images
Producing dense 3D reconstructions from biological imaging data is a challenging instance segmentation task that requires significant ground-truth training data for effective and accurate deep learning-based models. Generating training data requires intense human effort to annotate each instance of an object across serial section images. Our focus is on the especially complicated brain neuropil, comprising an extensive interdigitation of dendritic, axonal, and glial processes visualized through serial section electron microscopy. We developed a novel deep learning-based method to generate dense 3D segmentations rapidly from sparse 2D annotations of a few objects on single sections. Models trained on the rapidly generated segmentations achieved similar accuracy as those trained on expert dense ground-truth annotations. Human time to generate annotations was reduced by three orders of magnitude and could be produced by non-expert annotators. This capability will democratize generation of training data for large image volumes needed to achieve brain circuits and measures of circuit strengths.  more » « less
Award ID(s):
2219894 2014862 1707356
PAR ID:
10517094
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
BioRxiv
Date Published:
Journal Name:
bioRxiv
ISSN:
2692-8205
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present SHRED, a method for 3D SHape REgion Decomposition. SHRED takes a 3D point cloud as input and uses learned local operations to produce a segmentation that approximates fine-grained part instances. We endow SHRED with three decomposition operations: splitting regions, fixing the boundaries between regions, and merging regions together. Modules are trained independently and locally, allowing SHRED to generate high-quality segmentations for categories not seen during training. We train and evaluate SHRED with fine-grained segmentations from PartNet; using its merge-threshold hyperparameter, we show that SHRED produces segmentations that better respect ground-truth annotations compared with baseline methods, at any desired decomposition granularity. Finally, we demonstrate that SHRED is useful for downstream applications, out-performing all baselines on zero-shot fine-grained part instance segmentation and few-shot finegrained semantic segmentation when combined with methods that learn to label shape regions. 
    more » « less
  2. Training deep learning models for unbiased stereology requires a large data set with associated ground truth. However manual ground truth annotation is tedious, time-consuming, and expert dependent. We propose an active deep learning method for automatic stereology counts using a snapshot ensemble approach. The method provides a confidence score for each mask in an unlabeled pool that reduces user verification to only images with high information content for training the deep learning model. The proposed method reduces the error rate to less than 1% for unbiased stereology cell counts on immunostained brain cells compared to manual stereology and requires ~25% less expert verification time compared to a previously proposed iterative deep learning approach. 
    more » « less
  3. Puyol Anton, E; Pop, M; Sermesant, M; Campello, V; Lalande, A; Lekadir, K; Suinesiaputra, A; Camara, O; Young, A (Ed.)
    Cardiac cine magnetic resonance imaging (CMRI) is the reference standard for assessing cardiac structure as well as function. However, CMRI data presents large variations among different centers, vendors, and patients with various cardiovascular diseases. Since typical deep-learning-based segmentation methods are usually trained using a limited number of ground truth annotations, they may not generalize well to unseen MR images, due to the variations between the training and testing data. In this study, we proposed an approach towards building a generalizable deep-learning-based model for cardiac structure segmentations from multi-vendor,multi-center and multi-diseases CMRI data. We used a novel combination of image augmentation and a consistency loss function to improve model robustness to typical variations in CMRI data. The proposed image augmentation strategy leverages un-labeled data by a) using CycleGAN to generate images in different styles and b) exchanging the low-frequency features of images from different vendors. Our model architecture was based on an attention-gated U-Net model that learns to focus on cardiac structures of varying shapes and sizes while suppressing irrelevant regions. The proposed augmentation and consistency training method demonstrated improved performance on CMRI images from new vendors and centers. When evaluated using CMRI data from 4 vendors and 6 clinical center, our method was generally able to produce accurate segmentations of cardiac structures. 
    more » « less
  4. Abstract Automated, reliable, and objective microstructure inference from micrographs is essential for a comprehensive understanding of process-microstructure-property relations and tailored materials development. However, such inference, with the increasing complexity of microstructures, requires advanced segmentation methodologies. While deep learning offers new opportunities, an intuition about the required data quality/quantity and a methodological guideline for microstructure quantification is still missing. This, along with deep learning’s seemingly intransparent decision-making process, hampers its breakthrough in this field. We apply a multidisciplinary deep learning approach, devoting equal attention to specimen preparation and imaging, and train distinct U-Net architectures with 30–50 micrographs of different imaging modalities and electron backscatter diffraction-informed annotations. On the challenging task of lath-bainite segmentation in complex-phase steel, we achieve accuracies of 90% rivaling expert segmentations. Further, we discuss the impact of image context, pre-training with domain-extrinsic data, and data augmentation. Network visualization techniques demonstrate plausible model decisions based on grain boundary morphology. 
    more » « less
  5. Monocular 3D object parsing is highly desirable in various scenarios including occlusion reasoning and holistic scene interpretation. We present a deep convolutional neural network (CNN) architecture to localize semantic parts in 2D image and 3D space while inferring their visibility states, given a single RGB image. Our key insight is to exploit domain knowledge to regularize the network by deeply supervising its hidden layers, in order to sequentially infer intermediate concepts associated with the final task. To acquire training data in desired quantities with ground truth 3D shape and relevant concepts, we render 3D object CAD models to generate large-scale synthetic data and simulate challenging occlusion configurations between objects. We train the network only on synthetic data and demonstrate state-of-the-art performances on real image benchmarks including an extended version of KITTI, PASCAL VOC, PASCAL3D+ and IKEA for 2D and 3D keypoint localization and instance segmentation. The empirical results substantiate the utility of our deep supervision scheme by demonstrating effective transfer of knowledge from synthetic data to real images, resulting in less overfitting compared to standard end-to-end training. 
    more » « less