skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spin Echo, Fidelity, and the Quantum Critical Fan in TmVO4
Using spin-echo nuclear magnetic resonance in the model transverse field Ising system TmVO4, we show that low frequency quantum fluctuations at the quantum critical point have a very different effect on 51V nuclear spins than classical low-frequency noise or fluctuations that arise at a finite temperature critical point. Spin echoes filter out the low-frequency classical noise but not the quantum fluctuations. This allows us to directly visualize the quantum critical fan and demonstrate the persistence of quantum fluctuations at the critical coupling strength in TmVO4 to high temperatures in an experiment that remains transparent to finite temperature classical phase transitions. These results show that while dynamical decoupling schemes can be quite effective in eliminating classical noise in a qubit, a quantum critical environment may lead to rapid entanglement and decoherence.  more » « less
Award ID(s):
2210613
PAR ID:
10517172
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Letters
Volume:
132
Issue:
21
ISSN:
0031-9007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The existence of a quantum critical point (QCP) and fluctuations around it are believed to be important for understanding the phase diagram in unconventional superconductors such as cuprates, iron pnictides, and heavy fermion superconductors. However, the QCP is usually buried deep within the superconducting dome and is difficult to investigate. The connection between quantum critical fluctuations and superconductivity remains an outstanding problem in condensed matter. Here combining both electrical transport and Nernst experiments, we explicitly demonstrate the onset of superconductivity at an unconventional QCP in gate-tuned monolayer tungsten ditelluride ( WTe 2 ) , with features incompatible with the conventional Bardeen-Cooper-Schrieffer scenario. The results lead to a superconducting phase diagram that is distinguished from other known superconductors. Two distinct gate-tuned quantum phase transitions are observed at the ends of the superconducting dome. We find that quantum fluctuations around the QCP of the underdoped regime are essential for understanding how the monolayer superconductivity is established. The unconventional phase diagram we report here illustrates a previously unknown relation between superconductivity and QCP. Published by the American Physical Society2025 
    more » « less
  2. An investigation of the validity of the semiclassical approximation to quantum electrodynamics in 1 + 1 dimensions is given. The criterion for validity used here involves the impact of quantum fluctuations introduced through a two-point function which emerges naturally when considering the stability of the backreaction equation to linear order perturbations, resulting in the linear response equation. Consideration is given to the case of a spatially homogeneous electric field generated by a classical source, coupled to a quantized massive spin ½ field. Solutions to the linear response equation as well as the impact of quantum fluctuations introduced through the current density two-point correlation function are presented for two relevant electric field-to-mass parameter values qE=m^2, indicative of the strength of the backreaction process. Previous efforts utilized approximate solutions to the linear response equation that were expected to be valid for early times. A comparative analysis is given between the exact and approximate solutions in order to validate this conjecture. 
    more » « less
  3. Abstract Single crystals of the quasi-skutterudite compounds Ca3(Ir1-xRhx)4Sn13(3–4–13) were synthesized by flux growth and characterized by x-ray diffraction, energy dispersive x-ray spectroscopy, magnetization, resistivity, and radio frequency magnetic susceptibility techniques. The coexistence and competition between the charge density wave (CDW) and superconductivity was studied by varying the Rh/Ir ratio. The superconducting transition temperature, T c , varies from 7 K in pure Ir (x = 0) to 8.3 K in pure Rh (x = 1). Temperature-dependent electrical resistivity reveals monotonic suppression of the CDW transition temperature,TCDW(x). The CDW starts in pure Ir,x = 0, atTCDW≈ 40 K and extrapolates roughly linearly to zero at x c 0.53–0.58 under the superconducting dome. Magnetization and transport measurements show a significant influence of CDW on superconducting and normal states. Meissner expulsion is substantially reduced in the CDW region, indicating competition between the CDW and superconductivity. The low-temperature resistivity is higher in the CDW part of the phase diagram, consistent with the reduced density of states due to CDW gapping. Its temperature dependence just above T c shows signs of non-Fermi liquid behavior in a cone-like composition pattern. We conclude that the Ca3(Ir1-xRhx)4Sn13alloy is a good candidate for a composition-driven quantum critical point at ambient pressure. 
    more » « less
  4. Using large-scale density-matrix renormalzation group calculations and minimally augmented spin-wave theory, we demonstrate that the phase diagram of the quantum 𝑆=1/2 𝐽1–𝐽3 ferro-antiferromagnetic model on the honeycomb lattice differs dramatically from the classical one. It hosts the double-zigzag and Ising-𝑧 phases as unexpected intermediaries between ferromagnetic and zigzag states that are also extended beyond their classical regions of stability. In broad agreement with quantum order-by-disorder arguments, these collinear phases replace the classical spiral state. 
    more » « less
  5. Ever since the discovery of the charge density wave (CDW) transition in the kagome metal CsV 3 Sb 5 , the nature of its symmetry breaking has been under intense debate. While evidence suggests that the rotational symmetry is already broken at the CDW transition temperature ( T CDW ), an additional electronic nematic instability well below T CDW has been reported based on the diverging elastoresistivity coefficient in the anisotropic channel ( m E 2 g ). Verifying the existence of a nematic transition below T CDW is not only critical for establishing the correct description of the CDW order parameter, but also important for understanding low-temperature superconductivity. Here, we report elastoresistivity measurements of CsV 3 Sb 5 using three different techniques probing both isotropic and anisotropic symmetry channels. Contrary to previous reports, we find the anisotropic elastoresistivity coefficient m E 2 g is temperature independent, except for a step jump at T CDW . The absence of nematic fluctuations is further substantiated by measurements of the elastocaloric effect, which show no enhancement associated with nematic susceptibility. On the other hand, the symmetric elastoresistivity coefficient m A 1 g increases below T CDW , reaching a peak value of 90 at T * = 20 K . Our results strongly indicate that the phase transition at T * is not nematic in nature and the previously reported diverging elastoresistivity is due to the contamination from the A 1 g channel. Published by the American Physical Society2024 
    more » « less