This content will become publicly available on April 3, 2025
- Award ID(s):
- 2304961
- NSF-PAR ID:
- 10517216
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- Journal of the American Society for Mass Spectrometry
- Volume:
- 35
- Issue:
- 4
- ISSN:
- 1044-0305
- Page Range / eLocation ID:
- 784 to 792
- Subject(s) / Keyword(s):
- Electron Capture Dissociation Ion Mobility
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Ion mobility spectrometry (IMS) mass spectrometry (MS) centers on the ability to separate gaseous structures by size, charge, shape, and followed by mass-to-charge (m/z). For oligomeric structures, improved separation is hypothesized to be related to the ability to extend structures through repulsive forces between cations electrostatically bonded to the oligomers. Here we show the ability to separate differently branched multiply charged ions of star-branched poly(ethylene glycol) oligomers (up to 2000 Da) regardless of whether formed by electrospray ionization (ESI) charged solution droplets or from charged solid particles produced directly from a surface by matrix-assisted ionization. Detailed structural characterization of isomers of the star-branched compositions was first established using a home-built high-resolution ESI IMS-MS instrument. The doubly charged ions have well-resolved drift times, achieving separation of isomers and also allowing differentiation of star-branched versus linear oligomers. An IMS-MS “snapshot” approach allows visualization of architectural dispersity and (im)purity of samples in a straightforward manner. Analyses capabilities are shown for different cations and ionization methods using commercially available traveling wave IMS-MS instruments. Analyses directly from surfaces using the new ionization processes are, because of the multiply charging, not only associated with the benefits of improved gas-phase separations, relative to that of ions produced by matrix-assisted laser desorption/ionization, but also provide the potential for spatially resolved measurements relative to ESI and other ionization methods.more » « less
-
Tandem mass spectrometry (MS/MS) using fragmentation has become one of the most effective methods for gaining sequence and structural information of biomolecules. Ion/ion reactions are competitive reactions where either proton transfer (PT) or electron transfer (ET) can occur from interactions between multiply charged cations and singly charged anions. Utilizing ion/ion reactions with fluoranthene has offered a unique method of fragment formation for structural elucidation of biomolecules. Fluoranthene is considered an ideal anion reagent because it selectively causes electron transfer dissociation (ETD) and minimizes PT when interacting with peptides. However, limited investigations have sought to understand how fluoranthene – the primary, commercially available anion reagent – interacts with other biomolecules. Here, we apply deuterium labeling to investigate ion/ion reaction mechanisms between fluoranthene and divalent, metal-adducted carbohydrates (Ca2+, Mg2+, Co2+, and Ni2+). Deuterium labeling of carbohydrates allowed us to observe evidence of hydrogen/deuterium exchange (HDX) occurring after ion/ion dissociation reactions. The extent of deuterium loss is dependent on several factors, including the physical properties of the metal ion and the fragment structure. Based on the deuterium labeling data, we have proposed ETD, PTD, and intermolecular PT – also described as HDX - mechanisms. This research provides a fundamental perspective of ion/ion and ion/molecule reaction mechanisms and illustrates properties that impact ion/ion and ion/molecule reactions for carbohydrates. Together, this could improve the capability to distinguish complex and heterogenous biomolecules, such as carbohydrates.more » « less
-
Rationale The function of a protein or the binding affinity of an antibody can be substantially altered by the replacement of leucine (Leu) with isoleucine (Ile), and vice versa, so the ability to identify the correct isomer using mass spectrometry can help resolve important biological questions. Tandem mass spectrometry approaches for Leu/Ile (Xle) discrimination have been developed, but they all have certain limitations.
Methods Four model peptides and two wild‐type peptide sequences containing either Leu or Ile residues were subjected to charge transfer dissociation (CTD) mass spectrometry on a modified three‐dimensional ion trap. The peptides were analyzed in both the 1+ and 2+ charge states, and the results were compared to conventional collision‐induced dissociation spectra of the same peptides obtained using the same instrument.
Results CTD resulted in 100% sequence coverage for each of the studied peptides and provided a variety of side‐chain cleavages, including
d ,w andv ions. Using CTD, reliabled andw ions of Xle residues were observed more than 80% of the time. When present,d ions are typically greater than 10% of the abundance of the correspondinga ions from which they derive, andw ions are typically more abundant than thez ions from which they derive.Conclusions CTD has the benefit of being applicable to both 1+ and 2+ precursor ions, and the overall performance is comparable to that of other high‐energy activation techniques like hot electron capture dissociation and UV photodissociation. CTD does not require chemical modifications of the precursor peptides, nor does it require additional levels of isolation and fragmentation.
-
The ability to understand the function of a protein often relies on knowledge about its detailed structure. Sometimes, seemingly insignificant changes in the primary structure of a protein, like an amino acid substitution, can completely disrupt a protein's function. Long-lived proteins (LLPs), which can be found in critical areas of the human body, like the brain and eye, are especially susceptible to primary sequence alterations in the form of isomerization and epimerization. Because long-lived proteins do not have the corrective regeneration capabilities of most other proteins, points of isomerism and epimerization that accumulate within the proteins can severely hamper their functions and can lead to serious diseases like Alzheimer's disease, cancer and cataracts. Whereas tandem mass spectrometry (MS/MS) in the form of collision-induced dissociation (CID) generally excels at peptide characterization, MS/MS often struggles to pinpoint modifications within LLPs, especially when the differences are only isomeric or epimeric in nature. One of the most prevalent and difficult-to-identify modifications is that of aspartic acid between its four isomeric forms: l -Asp, l -isoAsp, d -Asp, and d -isoAsp. In this study, peptides containing isomers of Asp were analyzed by charge transfer dissociation (CTD) mass spectrometry to identify spectral features that could discriminate between the different isomers. For the four isomers of Asp in three model peptides, CTD produced diagnostic ions of the form c n +57 on the N-terminal side of iso-Asp residues, but not on the N-terminal side of Asp residues. Using CTD, the l - and d forms of Asp and isoAsp could also be differentiated based on the relative abundance of y - and z ions on the C-terminal side of Asp residues. Differentiation was accomplished through a chiral discrimination factor, R , which compares an ion ratio in a spectrum of one epimer or isomer to the same ion ratio in the spectrum of a different epimer or isomer. The R values obtained using CTD are as robust and statistically significant as other fragmentation techniques, like radical directed dissociation (RDD). In summary, the extent of backbone and side-chain fragments produced by CTD enabled the differentiation of isomers and epimers of Asp in a variety of peptides.more » « less
-
Ion dissociation is the usual basis for tandem MS analysis but a significant limitation is that only charged fragments from ion dissociation events are detected while neutral fragments are simply lost. This study reports our continued effort to solve this problem by developing atmospheric pressure neutral reionization mass spectrometry (APNR). In APNR, analyte ions are thermally dissociated (atmospheric pressure thermal dissociation, APTD) followed by soft reionization using electrosonic spray ionization (ESSI). Our results show that APNR is a powerful method for structural analysis of various biomolecules such as peptides, saccharides and nucleotides, as well as for elucidating unimolecular ion dissociation mechanisms. It was found that APNR provides extensive fragment ions including a series of y ions in peptides, which benefit sequencing and provide complementary information to collision induced dissociation (CID). In particular, direct cleavage of disulfide bonds of peptides occurs during APTD, facilitating peptide sequencing and disulfide bond mapping. In addition, many cross-ring cleavage fragments are detected during APNR analysis of oligosaccharides, indicating that the APTD dissociation process is energetic and potentially useful for identifying glycan linkage sites. Fragmentation patterns of oligosaccharide isomers can be used for their differentiation. Furthermore, in the cases of dissociation of nucleotides and synthetic naphthoylindole drugs, the putative neutral, phosphorylated riboses and indoles, were successfully detected using APNR, providing strong evidence to confirm previously proposed unimolecular ion dissociation mechanisms. We believe this APNR technique along with APTD should be of high value in structure determination of biomolecules.more » « less