skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Introducing The Focus & Action of Students & Teachers Observation Protocol (FASTOP)
This methods paper describes the development, use, and initial findings for the Focus and Actions of Students and Teachers Observation Protocol (FASTOP). The ICAP model describes the benefits of interactive (I), constructive (C), and active (A) learning over passive (P) learning. However, instructors who seek to adopt more effective pedagogies often overestimate their use of such practices and/or omit key elements. Thus, our research seeks to enhance understanding of classroom practice by combining data from student surveys, instructor surveys, and classroom observations (both live and video recorded). This paper describes a new classroom observation protocol intended to monitor the focus (e.g., solo, pair, team, or whole class) and action (e.g., discuss, speak/present, watch/listen, or distracted) of both students and teachers (instructors). The paper summarizes relevant background on evidence-based learning, student engagement, and classroom observation protocols, describes the development and structure of FASTOP, presents results from different pedagogies (e.g., lecture, laboratory, POGIL), and describes lessons learned and future directions. Results show distinctive patterns of student and teacher behaviors for different pedagogies.  more » « less
Award ID(s):
2216454
PAR ID:
10517257
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ASEE Conferences
Date Published:
Format(s):
Medium: X
Location:
Baltimore , Maryland
Sponsoring Org:
National Science Foundation
More Like this
  1. Flexible classroom spaces, which have movable tables and chairs that can be easily rearranged into different layouts, make it easier for instructors to effectively implement active learning than a traditional lecture hall. Instructors can move throughout the room to interact with students during active learning, and they can rearrange the tables into small groups to facilitate conversation between students. Classroom technology, such as wall-mounted monitors and movable whiteboards, also facilitates active learning by allowing students to collaborate. In addition to enabling active learning, the flexible classroom can still be arranged in front-facing rows that support traditional lecture-based pedagogies. As a result, instructors do not have to make time- and effort-intensive changes to the way their courses are taught in order to use the flexible classroom. Instead, they can make small changes to add active learning. We are in the second year of a study of flexible classroom spaces funded by the National Science Foundation’s Division of Undergraduate Education. This project asks four research questions that investigate the relationships between the instructor, the students, and the classroom: 1) What pedagogy do instructors use in a flexible classroom space? 2) How do instructors take advantage of the instructional affordances (including the movable furniture, movable whiteboards, wall-mounted whiteboards, and wall-mounted monitors) of a flexible classroom? 3) What is the impact of faculty professional development on instructors’ use of flexible classroom spaces? and 4) How does the classroom influence the ways students interpret and engage in group learning activities? In the first year of our study we have developed five research instruments to answer these questions: a three-part classroom observation protocol, an instructor interview protocol, two instructor surveys, and a student survey. We have collected data from nine courses taught in one of ten flexible classrooms at the University of Michigan during the Fall 2018 semester. Two of these courses were first-year introduction to engineering courses co-taught by two instructors, and the other seven courses were sophomore- and junior-level core technical courses taught by one instructor. Five instructors participated in a faculty learning community that met three times during the semester to discuss active learning, to learn how to make the best use of the flexible classroom affordances, and to plan activities to implement in their courses. In each course we gathered data from the perspective of the instructor (through pre- and post-semester interviews), the researcher (through observations of three class meetings with our observation protocol), and the students (through conducting a student survey at the end of the semester). This poster presents qualitative and qualitative analyses of these data to answer our research questions, along with evidence based best practices for effectively using a flexible classroom. 
    more » « less
  2. null (Ed.)
    We investigated how changing the physical classroom impacted graduate teaching assistant (GTA) and student behaviors in tutorial sections of an introductory algebra-based physics sequence. Using a modified version of the Laboratory Observation Protocol for Undergraduate STEM (LOPUS), we conducted 35 observations over two semesters for seven GTAs who taught in different styles of classrooms (i.e., active learning classrooms and traditional classrooms). We found that both GTAs and students changed behaviors in response to a change from an active learning classroom to a traditional classroom. GTAs were found to be less interactive with student groups and to lecture at the whiteboard more frequently. Correspondingly, student behaviors changed as students asked fewer questions during one-on-one interactions. These findings suggest that the instructional capacity framework, which typically focuses on interactions between instructors, students and instructional materials, should also include interactions with the learning space. We suggest administrators and departments consider the impact of changing to a traditional classroom when implementing student-centered instruction and emphasize how to use classroom space in GTA professional development. 
    more » « less
  3. Despite many studies confirming that active learning in STEM classrooms improves student outcomes, instructors’ adoption of active learning has been surprisingly slow. This work-in-progress paper describes our broader research study in which we compare the efficacy of a traditional active learning workshop (AL) and an extended version of this workshop that also specifically highlights instructor strategies to reduce resistance (AL+) on instructors’ beliefs about and actual adoption of active learning in undergraduate STEM classrooms. Through a randomized control trial (RCT), we aim to understand the ways in which these workshops influence instructors’ motivation to adopt and the actual use of active learning. This RCT involves instructors and students at a large number of institutions including two-year college, four-year college, and large research institutions in three regions of the country and strategies to reduce student resistance to active learning. We have developed and piloted three instruments, which allow for triangulation of classroom data: an instructor survey, a student survey, and a classroom observation protocol. This work-in-progress paper will cover the current progress of our research study and present our research instruments. 
    more » « less
  4. Despite many studies confirming that active learning in STEM classrooms improves student outcomes, instructors;' adoption of active learning has been surprisingly slow. This work-in-progress paper describes our broader research study in which we compare the efficacy of a traditional active learning workshop (AL) and an extended version of this workshop that also specifically highlights instructor strategies to reduce resistance (AL+) on instructors' beliefs about and actual adoption of active learning in undergraduate STEM classrooms. Through a randomized control trial (RCT), we aim to understand the ways in which these workshops influence instructors' motivation to adopt and the actual use of active learning. This RCT involves instructors and students at a large number of institutions including two-year college, four-year college, and large research institutions in three regions of the country and strategies to reduce student resistance to active learning. We have developed and piloted three instruments, which allow for triangulation of classroom data: an instructor survey, a student survey, and a classroom observation protocol. This work-in-progress paper will cover the current progress of our research study and present our research instruments. 
    more » « less
  5. Despite many studies confirming that active learning in STEM classrooms improves student outcomes, instructors’ adoption of active learning has been surprisingly slow. This work-in-progress paper describes our broader research study in which we compare the efficacy of a traditional active learning workshop (AL) and an extended version of this workshop that also specifically highlights instructor strategies to reduce resistance (AL+) on instructors’ beliefs about and actual adoption of active learning in undergraduate STEM classrooms. Through a randomized control trial (RCT), we aim to understand the ways in which these workshops influence instructors’ motivation to adopt and the actual use of active learning. This RCT involves instructors and students at a large number of institutions including two-year college, four-year college, and large research institutions in three regions of the country and strategies to reduce student resistance to active learning. We have developed and piloted three instruments, which allow for triangulation of classroom data: an instructor survey, a student survey, and a classroom observation protocol. This work-in-progress paper will cover the current progress of our research study and present our research instruments. 
    more » « less