Abstract We prove an inequality that unifies previous works of the authors on the properties of the Radon transform on convex bodies including an extension of the Busemann–Petty problem and a slicing inequality for arbitrary functions. Let $$K$$ and $$L$$ be star bodies in $${\mathbb R}^n,$$ let $0<k<n$ be an integer, and let $f,g$ be non-negative continuous functions on $$K$$ and $$L$$, respectively, so that $$\|g\|_\infty =g(0)=1.$$ Then $$\begin{align*} & \frac{\int_Kf}{\left(\int_L g\right)^{\frac{n-k}n}|K|^{\frac kn}} \le \frac n{n-k} \left(d_{\textrm{ovr}}(K,\mathcal{B}\mathcal{P}_k^n)\right)^k \max_{H} \frac{\int_{K\cap H} f}{\int_{L\cap H} g}, \end{align*}$$where $|K|$ stands for volume of proper dimension, $$C$$ is an absolute constant, the maximum is taken over all $(n-k)$-dimensional subspaces of $${\mathbb R}^n,$$ and $$d_{\textrm{ovr}}(K,\mathcal{B}\mathcal{P}_k^n)$$ is the outer volume ratio distance from $$K$$ to the class of generalized $$k$$-intersection bodies in $${\mathbb R}^n.$$ Another consequence of this result is a mean value inequality for the Radon transform. We also obtain a generalization of the isomorphic version of the Shephard problem.
more »
« less
Negative Moments of L –Functions With Small Shifts Over Function Fields
Abstract We consider negative moments of quadratic Dirichlet $$L$$–functions over function fields. Summing over monic square-free polynomials of degree $2g+1$ in $$\mathbb{F}_{q}[x]$$, we obtain an asymptotic formula for the $$k^{\textrm{th}}$$ shifted negative moment of $$L(1/2+\beta ,\chi _{D})$$, in certain ranges of $$\beta $$ (e.g., when roughly $$\beta \gg \log g/g $$ and $k<1$). We also obtain non-trivial upper bounds for the $$k^{\textrm{th}}$$ shifted negative moment when $$\log (1/\beta ) \ll \log g$$. Previously, almost sharp upper bounds were obtained in [ 3] in the range $$\beta \gg g^{-\frac{1}{2k}+\epsilon }$$.
more »
« less
- Award ID(s):
- 2101769
- PAR ID:
- 10517266
- Publisher / Repository:
- IMRN
- Date Published:
- Journal Name:
- International Mathematics Research Notices
- ISSN:
- 1073-7928
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract For every integer k there exists a bound $$B=B(k)$$ B = B ( k ) such that if the characteristic polynomial of $$g\in \textrm{SL}_n(q)$$ g ∈ SL n ( q ) is the product of $$\le k$$ ≤ k pairwise distinct monic irreducible polynomials over $$\mathbb {F}_q$$ F q , then every element x of $$\textrm{SL}_n(q)$$ SL n ( q ) of support at least B is the product of two conjugates of g . We prove this and analogous results for the other classical groups over finite fields; in the orthogonal and symplectic cases, the result is slightly weaker. With finitely many exceptions ( p , q ), in the special case that $$n=p$$ n = p is prime, if g has order $$\frac{q^p-1}{q-1}$$ q p - 1 q - 1 , then every non-scalar element $$x \in \textrm{SL}_p(q)$$ x ∈ SL p ( q ) is the product of two conjugates of g . The proofs use the Frobenius formula together with upper bounds for values of unipotent and quadratic unipotent characters in finite classical groups.more » « less
-
Abstract We obtain conditional upper bounds for negative discrete moments of the derivative of the Riemann zeta‐function averaged over a subfamily of zeros of the zeta function that is expected to be arbitrarily close to full density inside the set of all zeros. For , our bounds for the ‐th moments are expected to be almost optimal. Assuming a conjecture about the maximum size of the argument of the zeta function on the critical line, we obtain upper bounds for these negative moments of the same strength while summing over a larger subfamily of zeta zeros.more » « less
-
Abstract We compute moments of L-functions associated to the polynomial family of Artin–Schreier covers over $$\mathbb{F}_q$$, where q is a power of a prime p > 2, when the size of the finite field is fixed and the genus of the family goes to infinity. More specifically, we compute the $$k{\text{th}}$$ moment for a large range of values of k, depending on the sizes of p and q. We also compute the second moment in absolute value of the polynomial family, obtaining an exact formula with a lower order term, and confirming the unitary symmetry type of the family.more » « less
-
Abstract We study the extent to which divisors of a typical integer n are concentrated. In particular, defining $$\Delta (n) := \max _t \# \{d | n, \log d \in [t,t+1]\}$$ Δ ( n ) : = max t # { d | n , log d ∈ [ t , t + 1 ] } , we show that $$\Delta (n) \geqslant (\log \log n)^{0.35332277\ldots }$$ Δ ( n ) ⩾ ( log log n ) 0.35332277 … for almost all n , a bound we believe to be sharp. This disproves a conjecture of Maier and Tenenbaum. We also prove analogs for the concentration of divisors of a random permutation and of a random polynomial over a finite field. Most of the paper is devoted to a study of the following much more combinatorial problem of independent interest. Pick a random set $${\textbf{A}} \subset {\mathbb {N}}$$ A ⊂ N by selecting i to lie in $${\textbf{A}}$$ A with probability 1/ i . What is the supremum of all exponents $$\beta _k$$ β k such that, almost surely as $$D \rightarrow \infty $$ D → ∞ , some integer is the sum of elements of $${\textbf{A}} \cap [D^{\beta _k}, D]$$ A ∩ [ D β k , D ] in k different ways? We characterise $$\beta _k$$ β k as the solution to a certain optimisation problem over measures on the discrete cube $$\{0,1\}^k$$ { 0 , 1 } k , and obtain lower bounds for $$\beta _k$$ β k which we believe to be asymptotically sharp.more » « less