Abstract The reaction of an aryne with an alkyne to generate a benzocyclobutadiene (BCB) intermediate is rare. We report here examples of this reaction, revealed by Diels–Alder trapping of the BCB by either pendant or external electron‐deficient alkynes. Mechanistic delineation of the reaction course is supported by DFT calculations. A three‐component process joining the benzyne first with an electron‐rich and then with an electron‐poor alkyne was uncovered. Reactions in which the BCB functions in a rarely observed role as a 4π diene component in Diels–Alder reactions are reported. The results also shed new light on aspects of the hexadehydro‐Diels–Alder reaction used to generate the benzynes.
more »
« less
Palladium Nano-Dispersed and Stabilized in Organically Modified Silicate as a Heterogeneous Catalyst for the Conversion of Aldehydes into O-Silyl Ether Derivatives under Neat Conditions
Abstract Palladium nanoparticles are dispersed and stabilized in organically modified silicate (Pd@MTES), and characterized by a number of spectroscopic techniques, including FTIR, TEM, SEM, and XPS. The catalytic effect of this material toward the hydrosilylation of aldehydes and ketones is explored, and the scope of the reaction investigated, with 26 examples provided. This reaction proceeds under neat conditions via heterogeneous catalysis, and a mechanistic pathway supported by DFT calculations is proposed.
more »
« less
- Award ID(s):
- 1954734
- PAR ID:
- 10517315
- Publisher / Repository:
- https://www.thieme-connect.com/products/ejournals/abstract/10.1055/a-2326-6277
- Date Published:
- Journal Name:
- Synthesis
- Volume:
- 56
- Issue:
- 13
- ISSN:
- 0039-7881
- Page Range / eLocation ID:
- 2031 to 2046
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract An N‐heterocyclic‐carbene‐ligated 3‐benzoborepin with a bridged structure has been synthesized by double radicaltrans‐hydroboration of benzo[3,4]cycloundec‐3‐ene‐1,5‐diyne with an N‐heterocyclic carbene borane. The thermal reaction of the NHC‐ligated borepin at 150 °C gives an isolable NHC‐boranorcaradiene. Experiments and density functional theory calculations support a mechanism whereby the borepin initially rearranges to a boranorcaradiene by a thermal 6π‐electrocyclic reaction. This is followed by 1,5‐boron shift to give a rearranged boranorcaradiene. This shift occurs with stereoinversion at boron through a transition state with open‐shell diradical character. This is the first example of the isolation of a boranorcaradiene from a thermal reaction of a borepin.more » « less
-
Abstract The Katritzky reaction in bulk solution at room temperature is accelerated significantly by the surface of a glass container compared to a plastic container. Remarkably, the reaction rate is increased by more than two orders of magnitude upon the addition of glass particles with the rate increasing linearly with increasing amounts of glass. A similar phenomenon is observed when glass particles are added to levitated droplets, where large acceleration factors are seen. Evidence shows that glass acts as a “green” heterogeneous catalyst: it participates as a base in the deprotonation step and is recovered unchanged from the reaction mixture. Reaction acceleration at two separate interfaces is recognized in this study: i) air/solution phase acceleration, as is well known in microdroplets; ii) solid/solution phase, where such acceleration appears to be a new phenomenon.more » « less
-
Abstract The sulfur fluoride exchange (SuFEx) reaction is significant in drug discovery, materials science, and chemical biology. Conventionally, it involves installation of SO2F followed by fluoride exchange by a catalyst. We report catalyst‐free Aza‐Michael addition to install SO2F and then SuFEx reaction with amines, both occurring in concert, in microdroplets under ambient conditions. The microdroplet reaction is accelerated by a factor of ∼104relative to the corresponding bulk reaction. We suggest that the superacidic microdroplet surface assists SuFEx reaction by protonating fluorine to create a good leaving group. The reaction scope was established by performing individual reactions in microdroplets of 18 amines in four solvents and confirmed using high‐throughput desorption electrospray ionization experiments. The study demonstrates the value of microdroplet‐assisted accelerated reactions in combination with high‐throughput experimentation for characterization of reaction scope.more » « less
-
Abstract Mechanistic understanding of organic reactions can facilitate reaction development, impurity prediction, and in principle, reaction discovery. While several machine learning models have sought to address the task of predicting reaction products, their extension to predicting reaction mechanisms has been impeded by the lack of a corresponding mechanistic dataset. In this study, we construct such a dataset by imputing intermediates between experimentally reported reactants and products using expert reaction templates and train several machine learning models on the resulting dataset of 5,184,184 elementary steps. We explore the performance and capabilities of these models, focusing on their ability to predict reaction pathways and recapitulate the roles of catalysts and reagents. Additionally, we demonstrate the potential of mechanistic models in predicting impurities, often overlooked by conventional models. We conclude by evaluating the generalizability of mechanistic models to new reaction types, revealing challenges related to dataset diversity, consecutive predictions, and violations of atom conservation.more » « less
An official website of the United States government

