skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chemiresistive sensing with functionalized carbon nanotubes
Chemical sensing has a vital role in promoting security and welfare. Functionalized carbon nanotubes (CNTs) possess unique electronic, mechanical and chemical properties, rendering them as exceptional transducers for developing highly sensitive, selective and robust chemical sensors. In this Primer, we discuss the progress and challenges associated with chemiresistive sensing using functionalized CNTs, providing an introductory overview, spanning from theoretical to experimental aspects. Various covalent and non-covalent CNT functionalization strategies that contribute to enhancing the sensitivity and selectivity of chemiresistive sensors are discussed, along with their respective merits and drawbacks. Additionally, this Primer focuses on the critical facets of experimental design, including material selection, device architecture and fabrication and best practices for sensor testing. This Primer also discusses the significance of rigorous data interpretation, analysis and reporting, ensuring reproducibility and reliability. Finally, this Primer highlights the existing limitations of CNT-based chemiresistive sensors and investigates potential strategies for enhancing sensor selectivity and sensitivity that may broaden their applicability in diverse fields, from environmental monitoring to biomedical diagnostics. By emphasizing the need to understand the molecular interactions between the sensor and target analyte to improve selectivity, this Primer aims to offer a comprehensive understanding of the current state of CNT-based chemiresistive sensing.  more » « less
Award ID(s):
2207299
PAR ID:
10517319
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Nature Reviews Methods Primers
Volume:
3
Issue:
1
ISSN:
2662-8449
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In the carbon nanotubes film/graphene heterostructure decorated with catalytic Pt nanoparticles using atomic layer deposition (Pt-NPs/CNTs/Gr) H 2 sensors, the CNT film determines the effective sensing area and the signal transport to Gr channel. The former requires a large CNT aspect ratio for a higher sensing area while the latter demands high electric conductivity for efficient charge transport. Considering the CNT’s aspect ratio decreases, while its conductivity increases ( i.e. , bandgap decreases), with the CNT diameter, it is important to understand how quantitatively these effects impact the performance of the Pt-NPs/CNTs/Gr nanohybrids sensors. Motivated by this, this work presents a systematic study of the Pt-NPs/CNTs/Gr H 2 sensor performance with the CNT films made from different constituent CNTs of diameters ranging from 1 nm for single-wall CNTs, to 2 nm for double-wall CNTs, and to 10–30 nm for multi-wall CNTs (MWCNTs). By measuring the morphology and electric conductivity of SWCNT, DWCNT and MWCNT films, this work aims to reveal the quantitative correlation between the sensor performance and relevant CNT properties. Interestingly, the best performance is obtained on Pt-NPs/MWCNTs/Gr H 2 sensors, which can be attributed to the compromise of the effective sensing area and electric conductivity on MWCNT films and illustrates the importance of optimizing sensor design. 
    more » « less
  2. The rates of diabetes throughout the world are rising rapidly, impacting nearly every country. New research is focused on better ways to monitor and treat this disease. Breath acetone levels have been defined as a biomarker for diabetes. The development of a method to monitor and diagnose diabetes utilizing breath acetone levels would provide a fast, easy, and non-invasive treatment option. An ideal material for point-of-care diabetes management would need to have a high response to acetone, high acetone selectivity, low interference from humidity, and be able to operate at room temperature. Chemiresistive gas sensors are a promising method for sensing breath acetone due to their simple fabrication and easy operation. Certain semiconductor materials in chemiresistive sensors can react to acetone in the air and produce changes in resistance that can be correlated with acetone levels. While these materials have been developed and show strong responses to acetone with good selectivity, most of them must operate at high temperatures (compared to RT), causing high power consumption, unstable device operation, and complex device design. In this paper, we systematically studied a series of 2-dimensional MXene-based nanocomposites as the sensing materials in chemiresistive sensors to detect 2.86 ppm of acetone at room temperature. Most of them showed great sensitivity and selectivity for acetone. In particular, the 1D/2D CrWO/Ti3C2 nanocomposite showed the best sensing response to acetone: nine times higher sensitivity than 1D KWO nanowires. To determine the sensing selectivity, a CrWO/Ti3C2 nanocomposite-based sensor was exposed to various common vapors in human breath. The result revealed that it has excellent selectivity for acetone, and far lower responses to other vapors. All these preliminary results indicate that this material is a promising candidate for the creation of a point-of-care diabetes management device. 
    more » « less
  3. null (Ed.)
    Dynamic covalent Diels–Alder chemistry was combined with multiwalled carbon nanotube (CNT) reinforcement to develop strong, tough and conductive dynamic materials. Unlike other approaches to functionalizing CNTs, this approach uses Diels–Alder bonds between diene pendant groups on the polymer and the CNT surface πσ bonds acting as dienophiles. Experimental and simulation data align with the CNT reinforcement coming from dynamic covalent bonds between the matrix and the CNT surface. The addition of just 0.9 wt% CNTs can lead to an almost 3-fold increase in strength and 6–7 order of magnitude increases in electrical conductivity, and materials with 0.45 wt% CNTs show excellent strength, self-healing and conductivity. 
    more » « less
  4. Carbon nanotube (CNT)/epoxy nanocomposites have a great potential of possessing many advanced properties. However, the homogenization of CNT dispersion is still a great challenge in the research field of nanocomposites. This study applied a novel dispersion agent, carboxymethyl cellulose (CMC), to functionalize CNTs and improve CNT dispersion in epoxy. The effectiveness of the CMC functionalization was compared with mechanical mixing and a commonly used surfactant, sodium dodecylbenzene sulfonate (NaDDBS), regarding dispersion, mechanical and corrosion properties of CNT/epoxy nanocomposites with three different CNT concentrations (0.1%, 0.3% and 0.5%). The experimental results of Raman spectroscopy, particle size analysis and transmission electron microscopy showed that CMC functionalized CNTs reduced CNT cluster sizes more efficiently than NaDDBS functionalized and mechanically mixed CNTs, indicating a better CNT dispersion. The peak particle size of CMC functionalized CNTs reduced as much as 54% (0.1% CNT concentration) and 16% (0.3% CNT concentration), compared to mechanical mixed and NaDDBS functionalized CNTs. Because of the better dispersion, it was found by compressive tests that CNT/epoxy nanocomposites with CMC functionalization resulted in 189% and 66% higher compressive strength, 224% and 50% higher modulus of elasticity than those with mechanical mixing and NaDDBS functionalization respectively (0.1% CNT cencentration). In addition, electrochemical corrosion tests also showed that CNT/epoxy nanocomposites with CMC functionalization achieved lowest corrosion rate (0.214 mpy), the highest corrosion resistance (201.031 Ω·cm2), and the lowest porosity density (0.011%). 
    more » « less
  5. Sensing complex gaseous mixtures and identifying their composition and concentration have the potential to achieve unprecedented improvements in environmental monitoring, medical diagnostics, industrial safety, and the food/agriculture industry. Electronically transduced chemical sensors capable of recognizing and differentiating specific target gases and transducing these chemical stimuli in a portable electronic device offer an opportunity for impact by bridging the utility of chemical information with global wireless connectivity. Among electronically transduced chemical sensors, chemiresistors stand out as particularly promising due to combined features of low-power requirements, room temperature operation, non-line-of-sight detection, high portability, and exceptional modularity. Relying on changes in resistance of a functional material triggered by variations in the surrounding chemical environment, these devices have achieved part-per-billion sensitivities of analytes by employing conductive polymers, graphene, carbon nanotubes (CNTs), metal oxides, metal nanoparticles, metal dichalcogenides, or MXenes as sensing materials. Despite these tremendous developments, the need for stable, selective, and sensitive chemiresistors demands continued innovation in material design in order to operate in complex mixtures with interferents as well as variations in humidity and temperature. To fill existing gaps in sensing capabilities, conductive metal−organic frameworks (MOFs) and covalent organic frameworks (COFs) have recently emerged as a promising class of materials for chemiresistive sensing. In contrast to previously reported chemiresistors, these materials offer at least three unique features for gas sensing applications: (i) bottom-up synthesis from molecularly precise precursors that allows for strategic control of material−analyte interactions, (ii) intrinsic conductivity that simultaneously facilitates charge transport and signal transduction under low power requirements, and (iii) high surface area that enables the accessibility of abundant active sites and decontamination of gas streams by coordinating to and, sometimes, detoxifying harmful analytes. Through an emphasis on molecular engineering of structure−property relationships in conductive MOFs and COFs, combined with strategic innovations in device integration strategies and device form factor (i.e., the physical dimensions and design of device components), our group has paved the way to demonstrating the multifunctional utility of these materials in the chemiresistive detection of gases and vapors. Backed by spectroscopic assessment of material−analyte interactions, we illustrated how molecular-level features lead to device performance in detection, filtration, and detoxification of gaseous analytes. By merging the bottom-up synthesis of these materials with device integration, we show the versatility and scalability of using these materials in low-power electronic sensing devices. Taken together, our achievements, combined with the progress spearheaded on this class of materials by other researchers, establish conductive MOFs and COFs as promising multifunctional materials for applications in electronically transduced, portable, low-power sensing devices. 
    more » « less