skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Infrared photodetection using narrow bandgap conjugated polymers
Low-energy, infrared (IR) photodetection forms the foundation for industrial, scientific, energy, medical, and defense applications. State-of-the-art technologies suffer from limited modularity, intrinsic fragility, high-power consumption, require cooling, and are largely incompatible with integrated circuit technologies. Conjugated polymers offer low-cost and scalable fabrication, solution processability, room temperature operation, and other attributes that are not available using current technologies. Here, we demonstrate new materials and device paradigms that enable an understanding of emergent light-matter interactions and optical to electrical transduction of IR light. Photodiodes show a response to 2.0 μm, while photoconductors respond across the near- to long-wave infrared (1–14 µm). Fundamental investigations of polymer and device physics have resulted in improving performance to levels now matching commercial inorganic detectors. This is the longest wavelength light detected for organic materials and the performance exceeds graphene at longer wavelengths. Photoconductors outperform their inorganic counterparts and operate at room temperature with higher response speeds.  more » « less
Award ID(s):
2323665
NSF-PAR ID:
10517461
Author(s) / Creator(s):
Editor(s):
Rau, Ileana; Sugihara, Okihiro; Shensky, William M
Publisher / Repository:
SPIE
Date Published:
Journal Name:
Proceedings SPIE
ISSN:
1018-4732
ISBN:
9781510677937
Page Range / eLocation ID:
22
Format(s):
Medium: X
Location:
San Francisco, United States
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Semiconducting polymers are promising materials for manufacturing optoelectronic devices, such as large‐area solar cells or small light‐emitting diodes, through the use of printing technologies. In their oxidized form, π‐conjugated polymers become good electrical conductors and their optical absorption shifts to the infrared region. It is demonstrated that conducting polymers can be integrated in bolometers for IR detection. A bolometer is a thermally isolated thin device that absorbs IR radiation and translates a temperature change into a change in electrical resistance. While commercial bolometers are usually made of complex architectures comprising several materials (that is, an IR absorbing layer, a conducting layer, and a thermally insulating layer), the first polymer bolometer is demonstrated with a freestanding layer of poly(3,4‐ethylene‐dioxythiophene) having high IR absorption, low thermal conductivity, and good thermistor action in one single layer. The solution processability of conducting polymers, their compatibility with high‐resolution printing technologies, and their unique combination of optoelectronic properties can lead to a breakthrough for low‐cost uncooled IR cameras, which are in high demand for security and safety applications.

     
    more » « less
  2. Abstract

    Electronic eye cameras are receiving increasing interest due to their unique advantages such as wide field of view, low aberrations, and simple imaging optics compared to conventional planar focal plane arrays. However, the spectral sensing ranges of most electronic eyes are confined to the visible, which is limited by the energy gaps of the sensing materials and by fabrication obstacles. Here, a potential route leading to infrared electronic eyes is demonstrated by exploring flexible colloidal quantum dot (CQD) photovoltaic detectors. Benefitting from their tunable optical response and the ease of fabrication as solution processable materials, mercury telluride (HgTe) CQD detectors with mechanical flexibility, wide spectral sensing range, fast response, and high detectivity are demonstrated. A strategy is provided to further enhance the light absorption in flexible detectors by integrating a Fabry–Perot resonant cavity. Integrated short‐wave IR detectors on flexible substrates have peakD*of 7.5 × 1010Jones at 2.2 µm at room temperature and promise the development of infrared electronic eyes with high‐resolution imaging capability. Finally, infrared images are captured with the flexible CQD detectors at varying bending conditions, showing a practical approach to sensitive infrared electronic eyes beyond the visible range.

     
    more » « less
  3. Abstract

    The development of infrared (IR) plastic optics for infrared thermal imaging, particularly, in the long‐wave IR (LWIR) spectrum (7–14 µm) is an area of growing technological interest due to the potential advantages associated with plastic optics (e.g., moldability and low cost). The development of a new class of optical polymers, chalcogenide‐based inorganic/organic hybrid polymers (CHIPs) derived from the inverse vulcanization of elemental sulfur, has enabled significant improvements in IR transparency due to reduction of IR absorbing organic comonomer units. The vast majority of effort has focused on new chalcogenide hybrid polymer synthesis and optical property improvements (e.g., refractive index, Abbe number, and LWIR transmission); however, fabrication and IR imaging methodology to prepare optical components has not been demonstrated, which remains critical to develop viable IR plastic optics. A new methodology is reported to fabricate optical components and evaluate LWIR imaging performance of this emerging class of optical polymers. New diffractive flat optics with a Fresnel lens design for these materials have been developed, along with a basic LWIR imaging system to evaluate CHIPs for LWIR imaging. This system‐based approach enables correspondence of copolymer structure‐property correlations with LWIR imaging performance, along with demonstration of room temperature LWIR imaging.

     
    more » « less
  4. Abstract

    Detection of long wave infrared (LWIR) light at room temperature is a long‐standing challenge due to the low energy of photons. A low‐cost, high‐performance LWIR detector or camera that operates under such conditions is pursued for decades. Currently, all available detectors operate based on amplitude modulation (AM) and are limited in performance by AM noises, including Johnson noise, shot noise, and background fluctuation noise. To address this challenge, a frequency modulation (FM)‐based detection technique is introduced, which offers inherent robustness against different types of AM noises. The FM‐based approach yields an outstanding room temperature noise equivalent power (NEP), response time, and detectivity (D*). This result promises a novel uncooled LWIR detection scheme that is highly sensitive, low‐cost, and can be easily integrated with electronic readout circuitry, without the need for complex hybridization.

     
    more » « less
  5. Abstract

    Self‐assembly is a bioinspired strategy to craft materials for renewable and clean energy technologies. In plants, the alignment and assembly of the light‐harvesting protein machinery in the green leaf optimize the ability to efficiently convert light from the sun to form chemical bonds. In artificial systems, strategies based on self‐assembly using noncovalent interactions offer the possibility to mimic this functional correlation among molecules to optimize photocatalysis, photovoltaics, and energy storage. One of the long‐term objectives of the field described here as supramolecular energy materials is to learn how to design soft materials containing light‐harvesting assemblies and catalysts to generate fuels and useful chemicals. Supramolecular energy materials also hold great potential in the design of systems for photovoltaics in which intermolecular interactions in self‐assembled structures, for example, in electron donor and acceptor phases, maximize charge transport and avoid exciton recombination. Possible pathways to integrate organic and inorganic structures by templating strategies and electrodeposition to create materials relevant to energy challenges including photoconductors and supercapacitors are also described. The final topic discussed is the synthesis of hybrid perovskites in which organic molecules are used to modify both structure and functions, which may include chemical stability, photovoltaics, and light emission.

     
    more » « less