Digital twins are emerging as powerful tools for supporting innovation as well as optimizing the in-service performance of a broad range of complex physical machines, devices, and components. A digital twin is generally designed to provide accurate in-silico representation of the form (i.e., appearance) and the functional response of a specified (unique) physical twin. This paper offers a new perspective on how the emerging concept of digital twins could be applied to accelerate materials innovation efforts. Specifically, it is argued that the material itself can be considered as a highly complex multiscale physical system whose form (i.e., details of the material structure over a hierarchy of material length) and function (i.e., response to external stimuli typically characterized through suitably defined material properties) can be captured suitably in a digital twin. Accordingly, the digital twin can represent the evolution of structure, process, and performance of the material over time, with regard to both process history and in-service environment. This paper establishes the foundational concepts and frameworks needed to formulate and continuously update both the form and function of the digital twin of a selected material physical twin. The form of the proposed material digital twin can be captured effectively using the broadly applicable framework of n-point spatial correlations, while its function at the different length scales can be captured using homogenization and localization process-structure-property surrogate models calibrated to collections of available experimental and physics-based simulation data.
more »
« less
Internet of Federated Digital Twins (IoFDT): Connecting Twins Beyond Borders for Society 5.0
- Award ID(s):
- 2210254
- PAR ID:
- 10517489
- Publisher / Repository:
- IEEE Xplore
- Date Published:
- Journal Name:
- IEEE internet of things magazine
- ISSN:
- 2576-3180
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Urban informatics appears to be a suitable area for the application of digital twins. Definitions of the term share some characteristics, but these definitions do not agree on what exactly constitutes a digital twin. The term has the potential to be misleading unless adequate attention is paid to the inherent uncertainty in any replica of a real system. The question of uncertainty is addressed, together with some of the issues that make its quantification problematic. Digital twins for urban informatics pose questions of purpose, governance, and ethics. In the final section the paper suggests some research issues that will need to be addressed if digital twins are to be successful.more » « less
-
By combining two or more face images of look-alikes, morphed face images are generated to fool Facial Recognition Systems (FRS) into falsely accepting multiple people, leading to failures in security systems. Despite several attempts in the literature, finding pairs of bona fide faces to generate the morphed images is still a challenging problem. In this paper, we morph identical twin pairs to generate extremely difficult morphs for FRS. We first explore three methods of morphed face generation, GAN-based, landmark-based, and a wavelet-based morphing approach. We leverage these methods to generate morphs from the identical twin pairs that retain high similarity to both subjects while resulting in minimal artifacts in the visual domain. To further improve the difficulty of recognizing morphed face images, we perform an ablation study to apply adversarial perturbation to the morphs such that they cannot be detected by trained morph classifiers. The evaluation of the generated identical twin-morphed dataset is performed in terms of vulnerability analysis and presentation attack error rates.more » « less
An official website of the United States government

