skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Filling in the Gaps: Paleosols as Regional Recorders of East Asian Hydroclimate Response to the Cretaceous-Paleogene
The stable isotopic composition of soil-formed carbonate, and bulk geochemistry of preserved soil matrix, can provide regionally constrained records of hydroclimatic change throughout deep-time. The SK cores, spanning over 10 km of sediment drilled from the Songliao Basin in Northeast China, represent near continuous terrestrial deposition across the late Jurassic to early Paleogene. In this study we analyze SK-1n paleosol core samples spanning late Maastrichtian to early Danian to interpret the regional hydroclimate response to global climate change, concurrent with Deccan Traps volcanism and the Chicxulub impact. Building on numerous paleosol carbonate datasets from the Sifangtai and Mingshui formations, we present ~40 new carbonate clumped isotope measurements at ca. 10 – 20 kyr resolution between 66.3 to 65.5 Ma. We produce a new kernel-smoothed temperature record and estimate the δ18O of soil porewater (δ18Opw), and δ13C of soil CO2 (δ13Cs) from new and previously published datasets. Molecular weathering ratios, derived from bulk geochemistry, are used to reconstruct weathering (CIA-K), clay formation (Al/Si), soil drainage (Ba/Sr), and calculate mean annual precipitation (MAP) via established transfer functions. Preliminary results suggest elevated K-Pg boundary temperatures, averaging ~30 °C, that decline by ~10 °C over the following 500 kyr. Post-impact cooling may contribute to a negative δ18Ocarb excursion (-2.5‰) at ~65.8 Ma. Further, stable subhumid MAP (~1100 mm/yr) across the dataset suggests negligible amount effect influence. Mean δ18Opw (-6.9‰) is largely stable, and does not reflect regional monsoon seasonality. Instead, stable δ18Opw indicates a consistent moisture source, a potential persistent seasonal bias in carbonate formation. Binning all compiled δ18Opw by soil profile depth reveals statistically significant enrichment in the upper 60 cm of soil profiles, and accounts for variability in the δ18Opw (σ = 1.16‰). Soil respiration, modeled from δ13Cs, increases from ca. 700 to 2000 gC/m2/year across the K-Pg boundary, indicating increased productivity despite declining pCO2 and available phosphorus. Future work will expand the temporal range of isotopic measurements (~72 to 65 Ma) and contextualize our latest Cretaceous results within a spatial framework across Asia.  more » « less
Award ID(s):
2316733
PAR ID:
10517581
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Format(s):
Medium: X
Location:
San Francisco, CA
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Numerous geochemical anomalies exist at the K-Pg boundary that indicate the addition of extraterrestrial materials; however, none fingerprint volatilization, a key process that occurs during large bolide impacts. Stable Zn isotopes are an exceptional indicator of volatility-related processes, where partial vaporization of Zn leaves the residuum enriched in its heavy isotopes. Here, we present Zn isotope data for sedimentary rock layers of the K-Pg boundary, which display heavier Zn isotope compositions and lower Zn concentrations relative to surrounding sedimentary rocks, the carbonate platform at the impact site, and most carbonaceous chondrites. Neither volcanic events nor secondary alteration during weathering and diagenesis can explain the Zn concentration and isotope signatures present. The systematically higher Zn isotope values within the boundary layer sediments provide an isotopic fingerprint of partially evaporated material within the K-Pg boundary layer, thus earmarking Zn volatilization during impact and subsequent ejecta transport associated with an impact at the K-Pg. 
    more » « less
  2. Abstract Deep exposures of soil profiles on Miocene or Mio-Pliocene alluvial deposits were studied along a 500 km N-S transect in the Atacama Desert. These ancient deposits, with excellent surface preservation, now stand many meters above a broad incised Plio-Pleistocene alluvial terrain. Total geochemical analyses and mass balance calculations allowed the establishment of elemental gains, losses, and redistribution in the soils. From north to south (presently hyperarid to arid), the ancient soils reveal an increase in losses of rock-forming elements (Si, Al, Fe, K, Mg). Additionally, rare earth elements (REE) show losses with increasing southerly latitude and systematic patterns with soil depth. Some REEs appear to be unique chemical tracers of exogenous dust and aerosol additions to the soils. The removal of major elements and REEs is impossible in the present climate (one of salt and dust accumulation), revealing that for a significant period following the deposition of the alluvium, soils were exposed to rainfall, chemical weathering, and mass loss—with a geographical pattern that mirrors the present rainfall gradient in the region. Following the cessation of weathering, the pre-weathered soils have undergone enormous dust and salt accumulations, with the rates and types of salt accumulation consistent with latitude: (1) carbonate in the south and (2) sulfate, chlorides, and nitrates to the north. The quantity, and apparent rates, of salt accumulation have a strong latitudinal trend. Isotopes of sulfate have predictable depth patterns based on isotope fractionation via vertical reaction and transport. The relict hyperarid soils are geochemically similar to buried Miocene soils (ca. 10–9 Ma) in the region, but they differ from older Miocene soils, which formed in more humid conditions. The overall soil record for the Atacama Desert appears to be the product of changes in Pacific Ocean sea surface temperatures over time, and resulting changes in rainfall. The mid-Miocene was relatively humid based on buried soil chemistry and evidence of fluvial activity. The mid to late Miocene cooling (ca. 10–5.5 Ma) appears to have aridified the region based on paleosol soil chemistry. Pliocene to earliest Pleistocene conditions caused weathering of the relict soils examined here, and regional fluvial activity. Since the earliest Pleistocene, the region has largely experienced the accumulation of salts and, except for smaller scale oscillations (glacial-interglacial), has experienced protracted hyperaridity. 
    more » « less
  3. Factors driving the late Miocene expansion of C4 grasses remain widely debated. Here, we explored the role of climate and fire in controlling the abundance of C4 vegetation in the Angastaco Basin (Palo Pintado area) and La Viña Basin, NW Argentina, during the late Miocene (ca. 14−5.33 Ma). From paleosol horizons, we reconstructed paleoclimate and paleovegetation conditions using phytolith assemblages, geochemical and isotopic proxies, and polycyclic aromatic hydrocarbons (PAHs) to determine fire input. Our paleoclimate reconstructions suggest a stable mean annual temperature (MAT) of ∼10 °C and a gradual decline in mean annual precipitation (MAP) from 1100 mm yr−1 to 850 mm yr−1. Paleovegetation reconstructions from carbon isotopic composition and phytolith assemblages show a maximum of ∼15% C4 vegetation by 6 Ma. No significant increases in fire occurrence or establishment of fire feedbacks were identified from the PAH data. Though low in abundance (∼3% on average), our data identified the presence of C4 grass by the late Miocene. The lack of significant C4 expansion in this region was likely controlled by the changing hydroclimatic conditions associated with the Andes mountain range—increasing aridity and elevation constraints along with the lack of a fire feedback might have limited the distribution of C4 vegetation. 
    more » « less
  4. Early Paleocene floral communities were substantially restructured as a result of the Cretaceous-Paleogene (K-Pg) mass extinction approximately 66.0 Ma. While events immediately adjacent to the K-Pg boundary have been extensively studied, comparatively little research has looked at long-term terrestrial ecosystem recovery during the early Paleocene. The San Juan Basin (SJB), located in northwestern New Mexico, preserves an exceptional, large, and well-dated early Paleocene plant record making it an ideal location to study long-term recovery of early Paleocene terrestrial ecosystems. Here we investigate early Paleocene terrestrial ecosystem change using a coupled high-resolution plant and δ13C record from the SJB. Plant macrofossils were collected from the lower Paleocene Ojo Alamo Sandstone and lower Nacimiento Formation in the SJB spanning the initial ~1.5 myr of the Paleocene. Macrofloral extinction, origination, and net diversification rates were simultaneously estimated using the Pradel capture-mark-recapture (CMR) model from 66.0 – 64.5 Ma with 100 Kyr time-steps. Two intervals of decreasing floral diversity were identified: a short interval at ~65.5 Ma and a prolonged interval from ~65.2 – 64.7 Ma. Two short intervals of rapidly increasing floral diversity were also identified: the first at ~65.3 Ma and the second at ~64.6 Ma. The onset of both intervals of decreasing floral diversity are coeval with a -1.5 to -2.5 ‰ bulk organic δ13C excursion. We also applied the Pradel CMR model to contemporaneous macrofloras from the Denver Basin (DB), Colorado and the Williston Basin (WB), North Dakota and Montana. The floral diversity patterns estimated from the DB and WB indicate intervals of increasing and decreasing floral diversity that are coeval with the same intervals identified in the SJB. This suggests a regional driver in patterns of floral diversity change during the early Paleocene in western North America, which reflects prolonged terrestrial ecosystem instability following the K-Pg mass extinction. 
    more » « less
  5. Understanding and mitigating the e ects of our ongoing biodiversity crisis requires a deep-time perspective on how ecosystems recover in the aftermath of environmental catastrophes. The mass extinction event at the Cretaceous/Paleogene (K/Pg) boundary (ca. 66 Ma) represents a natural laboratory wherein the tempo and mode of biotic recovery can be studied with high chronostratigraphic resolution. Although the morphological evolution of mammals across this event has been reconstructed from skeletal remains, the exact nature of any changes in dietary preference remains unknown. A primary goal here is to fill this gap by investigating how ecological preferences of mammals, reflected by diet, changed from the Late Cretaceous, when they shared landscapes with dinosaurs, to the earliest Paleogene, when they did not. To accomplish this, carbon and oxygen isotope ratios of fossil tooth enamel (bioapatite) were measured using laserablation mass spectrometry in order to infer animal diet and drinking water sources, which vary depending on the niche occupied by an animal. Fossil teeth were collected from two sites located within 400 meters of one another within the West Bijou Creek field area of the Denver Basin, one 9 meters (~128 ky pre-K/Pg) below the boundary (teeth from ceratopsian and hadrosaurid dinosaurs and the multituberculate mammal Mesodma, as well as gar fish scales), and the other 4 meters (~57 ky post-K/Pg) above (Mesodma teeth and gar fish scales). Carbon isotope ratios (δ13C) of Mesodma tooth enamel vary significantly across the K/Pg boundary, with Late Cretaceous teeth having lower and more variable δ13C (-10.1 to -16.4‰, n=4) and early Paleocene teeth having higher and less variable δ13C (-5.3 to 9.0 ‰, n=5), the latter being similar to values for Late Cretaceous dinosaurs. These results suggest Mesodma had very di erent dietary behaviors following the extinction event, presumably a result of the disappearance of non-avian dinosaurs as well as 57% of North American plants, both of which made new food sources and niches available to them. These results also hint at a decoupling of behavioral change from morphological change, at least in the case of Mesodma, over 10 ky timescales. Isotopic analysis of teeth from other Late Cretaceous and earliest Paleogene mammalian taxa is ongoing and will hopefully allow for more detailed interpretations of ecological change across the K/Pg extinction event in the Denver Basin. 
    more » « less