skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2316733

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Pamir range, located in Central Asia, mainly receives moisture from the mid-latitude westerlies, but its western side (i.e., Tajikistan Pamir) receives much of its precipitation in the winter and spring and its eastern side (i.e., Chinese Pamir) in the summer. Thus, the Pamir provides a natural laboratory to study the distribution of surface water stable isotopes across a large mountain range that ultimately receives moisture from one single source but has different precipitation seasonality regimes between its two sides. In this study, we present stable oxygen (δ18O) and hydrogen (δ2H) isotope data for 113 surface water samples from the Chinese Pamir. Our new data, along with previously published stable isotope data, show that the slope of the Chinese Pamir local meteoric water line is higher than that of the Global Meteoric Water Line (GMWL), and almost all of the data plot above the GMWL, implying that the Chinese Pamir surface waters have not experienced significant isotopic modification by evaporation. The Chinese Pamir surface waters have substantially higher δ18O and d-excess values and a steeper apparent δ18O lapse rate than surface water samples collected from the Tajikistan Pamir. We suggest that this contrast results from the shift in precipitation seasonality across the Pamir, with dominantly winter and springtime precipitation on the Tajikistan side and summertime precipitation on the Chinese side of the Pamir. This predominant summertime precipitation regime results in surface waters with high δ18O values in the Chinese Pamir. Further, this summertime moisture is dominantly convectively recycled moisture, resulting in high d-excess values in surface waters. The percentage of summertime moisture, which has high δ18O values, decreases west and with elevation in the Chinese Pamir, resulting in a steep apparent δ18O lapse rate of − 3.2 ‰/km. The importance of precipitation seasonality in modulating δ18O values across the Pamir suggests that proxy-derived records of past environments in the region must consider the mechanisms that today cause the seasonality contrast. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. The stable isotopic composition of soil-formed carbonate, and bulk geochemistry of preserved soil matrix, can provide regionally constrained records of hydroclimatic change throughout deep-time. The SK cores, spanning over 10 km of sediment drilled from the Songliao Basin in Northeast China, represent near continuous terrestrial deposition across the late Jurassic to early Paleogene. In this study we analyze SK-1n paleosol core samples spanning late Maastrichtian to early Danian to interpret the regional hydroclimate response to global climate change, concurrent with Deccan Traps volcanism and the Chicxulub impact. Building on numerous paleosol carbonate datasets from the Sifangtai and Mingshui formations, we present ~40 new carbonate clumped isotope measurements at ca. 10 – 20 kyr resolution between 66.3 to 65.5 Ma. We produce a new kernel-smoothed temperature record and estimate the δ18O of soil porewater (δ18Opw), and δ13C of soil CO2 (δ13Cs) from new and previously published datasets. Molecular weathering ratios, derived from bulk geochemistry, are used to reconstruct weathering (CIA-K), clay formation (Al/Si), soil drainage (Ba/Sr), and calculate mean annual precipitation (MAP) via established transfer functions. Preliminary results suggest elevated K-Pg boundary temperatures, averaging ~30 °C, that decline by ~10 °C over the following 500 kyr. Post-impact cooling may contribute to a negative δ18Ocarb excursion (-2.5‰) at ~65.8 Ma. Further, stable subhumid MAP (~1100 mm/yr) across the dataset suggests negligible amount effect influence. Mean δ18Opw (-6.9‰) is largely stable, and does not reflect regional monsoon seasonality. Instead, stable δ18Opw indicates a consistent moisture source, a potential persistent seasonal bias in carbonate formation. Binning all compiled δ18Opw by soil profile depth reveals statistically significant enrichment in the upper 60 cm of soil profiles, and accounts for variability in the δ18Opw (σ = 1.16‰). Soil respiration, modeled from δ13Cs, increases from ca. 700 to 2000 gC/m2/year across the K-Pg boundary, indicating increased productivity despite declining pCO2 and available phosphorus. Future work will expand the temporal range of isotopic measurements (~72 to 65 Ma) and contextualize our latest Cretaceous results within a spatial framework across Asia. 
    more » « less