skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Title: PPS: Personalized Policy Summarization for Explaining Sequential Behavior of Autonomous Agents
AI-enabled agents designed to assist humans are gaining traction in a variety of domains such as healthcare and disaster response. It is evident that, as we move forward, these agents will play increasingly vital roles in our lives. To realize this future successfully and mitigate its unintended consequences, it is imperative that humans have a clear understanding of the agents that they work with. Policy summarization methods help facilitate this understanding by showcasing key examples of agent behaviors to their human users. Yet, existing methods produce “one-size-fits-all” summaries for a generic audience ahead of time. Drawing inspiration from research in pedagogy, we posit that personalized policy summaries can more effectively enhance user understanding. To evaluate this hypothesis, this paper presents and benchmarks a novel technique: Personalized Policy Summarization (PPS). PPS discerns a user’s mental model of the agent through a series of algorithmically generated questions and crafts customized policy summaries to enhance user understanding. Unlike existing methods, PPS actively engages with users to gauge their comprehension of the agent behavior, subsequently generating tailored explanations on the fly. Through a combination of numerical and human subject experiments, we confirm the utility of this personalized approach to explainable AI.  more » « less
Award ID(s):
2326390
PAR ID:
10638063
Author(s) / Creator(s):
; ;
Publisher / Repository:
The Association for the Advancement of Artificial Intelligence (AAAI)
Date Published:
Journal Name:
Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society
Volume:
7
ISSN:
3065-8365
Page Range / eLocation ID:
1167 to 1179
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Policy summarization is a computational paradigm for explaining the behavior and decision-making processes of autonomous robots to humans. It summarizes robot policies via exemplary demonstrations, aiming to improve human understanding of robotic behaviors. This understanding is crucial, especially since users often make critical decisions about robot deployment in the real world. Previous research in policy summarization has predominantly focused on simulated robots and environments, overlooking its application to physically embodied robots. Our work fills this gap by combining current policy summarization methods with a novel, interactive user interface that involves physical interaction with robots. We conduct human-subject experiments to assess our explanation system, focusing on the impact of different explanation modalities in policy summarization. Our findings underscore the unique advantages of combining virtual and physical training environments to effectively communicate robot behavior to human users. 
    more » « less
  2. Explanations of AI Agents' actions are considered to be an important factor in improving users' trust in the decisions made by autonomous AI systems. However, as these autonomous systems evolve from reactive, i.e., acting on user input, to proactive, i.e., acting without requiring user intervention, there is a need to explore how the explanation for the actions of these agents should evolve. In this work, we explore the design of explanations through participatory design methods for a proactive auto-response messaging agent that can reduce perceived obligations and social pressure to respond quickly to incoming messages by providing unavailability-related context. We recruited 14 participants who worked in pairs during collaborative design sessions where they reasoned about the agent's design and actions. We qualitatively analyzed the data collected through these sessions and found that participants' reasoning about agent actions led them to speculate heavily on its design. These speculations significantly influenced participants' desire for explanations and the controls they sought to inform the agents' behavior. Our findings indicate a need to transform users' speculations into accurate mental models of agent design. Further, since the agent acts as a mediator in human-human communication, it is also necessary to account for social norms in its explanation design. Finally, user expertise in understanding their habits and behaviors allows the agent to learn from the user their preferences when justifying its actions. 
    more » « less
  3. null (Ed.)
    We summarize our past five years of work on designing, building, and studying Sugilite, an interactive task learning agent that can learn new tasks and relevant associated concepts interactively from the user’s natural language instructions and demonstrations leveraging the graphical user interfaces (GUIs) of third-party mobile apps. Through its multi-modal and mixed-initiative approaches for Human- AI interaction, Sugilite made important contributions in improving the usability, applicability, generalizability, flexibility, robustness, and shareability of interactive task learning agents. Sugilite also represents a new human-AI interaction paradigm for interactive task learning, where it uses existing app GUIs as a medium for users to communicate their intents with an AI agent instead of the interfaces for users to interact with the underlying computing services. In this chapter, we describe the Sugilite system, explain the design and implementation of its key features, and show a prototype in the form of a conversational assistant on Android. 
    more » « less
  4. Li, Yang; Hilliges, Otmar (Ed.)
    We summarize our past five years of work on designing, building, and studying Sugilite, an interactive task learning agent that can learn new tasks and relevant associated concepts interactively from the user’s natural language instructions and demonstrations leveraging the graphical user interfaces (GUIs) of third-party mobile apps. Through its multi-modal and mixed-initiative approaches for Human-AI interaction, Sugilite made important contributions in improving the usability, applicability, generalizability, flexibility, robustness, and shareability of interactive task learning agents. Sugilite also represents a new human-AI interaction paradigm for interactive task learning, where it uses existing app GUIs as a medium for users to communicate their intents with an AI agent instead of the interfaces for users to interact with the underlying computing services. In this chapter, we describe the Sugilite system, explain the design and implementation of its key features, and show a prototype in the form of a conversational assistant on Android. 
    more » « less
  5. Regardless of how much data artificial intelligence agents have available, agents will inevitably encounter previously unseen situations in real-world deployments. Reacting to novel situations by acquiring new information from other people—socially situated learning—is a core faculty of human development. Unfortunately, socially situated learning remains an open challenge for artificial intelligence agents because they must learn how to interact with people to seek out the information that they lack. In this article, we formalize the task of socially situated artificial intelligence—agents that seek out new information through social interactions with people—as a reinforcement learning problem where the agent learns to identify meaningful and informative questions via rewards observed through social interaction. We manifest our framework as an interactive agent that learns how to ask natural language questions about photos as it broadens its visual intelligence on a large photo-sharing social network. Unlike active-learning methods, which implicitly assume that humans are oracles willing to answer any question, our agent adapts its behavior based on observed norms of which questions people are or are not interested to answer. Through an 8-mo deployment where our agent interacted with 236,000 social media users, our agent improved its performance at recognizing new visual information by 112%. A controlled field experiment confirmed that our agent outperformed an active-learning baseline by 25.6%. This work advances opportunities for continuously improving artificial intelligence (AI) agents that better respect norms in open social environments. 
    more » « less