This Complete Evidence-based Practice paper will describe how three different public urban research universities designed, executed, and iterated Summer Bridge programming for a subset of incoming first-year engineering students over the course of three consecutive years. There were commonalities between each institution’s Summer Bridge, as well as unique aspects catering to the specific needs and structures of each institution. Both these commonalities and unique aspects will be discussed, in addition to the processes of iteration and improvement, target student populations, and reported student outcomes. Finally, recommendations for other institutions seeking to launch or refine similar programming will be shared. Summer Bridge programming at each of the three institutions shared certain communalities. Mostly notably, each of the three institutions developed its Summer Bridge as an additional way to provide support for students receiving an NSF S-STEM scholarship. The purpose of each Summer Bridge was to build community among these students, prepare them for the academic rigor of first-year engineering curriculum, and edify their STEM identity and sense of belonging. Each Summer Bridge was a 3-5 day experience held in the week immediately prior to the start of the Fall semester. In addition to these communalities, each Summer Bridge also had its own unique features. At the first institution, Summer Bridge is focused on increasing college readiness through the transition from summer break into impending coursework. This institution’s Summer Bridge includes STEM special-interest presentations (such as biomedical or electrical engineering) and other development activities (such as communication and growth mindset workshops). Additionally, this institution’s Summer Bridge continues into the fall semester via a 1-credit hour First Year Seminar class, which builds and reinforces student networking and community beyond the summer experience. At the second institution, all students receiving the NSF S-STEM scholarship (not only those who are first-year students) participate in Summer Bridge. This means that S-STEM scholars at this institution participate in Summer Bridge multiple years in a row. Relatedly, after the first year, Summer Bridge transitioned to a student-led and student-delivered program, affording sophomore and junior students leadership opportunities, which not only serve as marketable experience after graduation, but also further builds their sense of STEM identity and belonging. At the third institution, a special focus was given to building community. This was achieved through several means. First, each day of Summer Bridge included a unique team-oriented design challenge where students got to work together and know each other within an engineering context, also reinforcing their STEM identities. Second, students at this institution’s Summer Bridge met their future instructors in an informal, conversational, lunch setting; many students reported this was one of their favorite aspects of Summer Bridge. Finally, Summer Bridge facilitated a first connect between incoming first-year students and their peer mentors (sophomore and junior students also receiving the NSF S-STEM scholarship), with whom they would meet regularly throughout the following fall and spring semesters. Each of the three institutions employed processes of iteration and improvement for their Summer Bridge programming over the course of two or three consecutive years. Through each version and iteration of Summer Bridge, positive student outcomes are demonstrated, including direct student feedback indicating built community among students and the perception that their time spent during Summer Bridge was valuable. Based on the experiences of these three institutions, as well as research on other institutions’ Summer Bridge programming, recommendations for those seeking to launch or refine similar Summer Bridge programming will also be shared.
more »
« less
Problem-Based Teaching: An Exploratory Analysis of Discourse Methods of Peer Facilitators in a Summer Engineering Bridge Program
As engineering educators attempt to develop solutions to increase student retention and graduation rates and decrease student departures from their majors during the first two years of study, findings from a summer bridge program at a large minority-serving institution (MSI) show promise for practices that could potentially help to mitigate these issues. Summer bridge strategies have been shown to be effective in assisting in college students’ transition from first to sophomore year. This study comprises a case study of a chemical engineering summer bridge program in which undergraduate peer facilitators introduced sophomore-level chemical engineering material and energy balance course material to their peers. The goal of this study was to understand the types of discourse methods used during problem-solving sessions by peer facilitators and how students’ learning experiences were impacted. Data for this study were collected via video observations and a post-program open-ended survey. Authors found that peer facilitators created an environment where students felt encouraged and supported and could relate to facilitators and course materials in new ways. This work further illustrates promising practices of using peer facilitators that need further attention, along with the potential for how engagement and learning could be enhanced by the more formal preparation of peer facilitators.
more »
« less
- Award ID(s):
- 2225246
- PAR ID:
- 10517616
- Publisher / Repository:
- Educ. Sci.
- Date Published:
- Journal Name:
- Education Sciences
- Volume:
- 14
- Issue:
- 7
- ISSN:
- 2227-7102
- Page Range / eLocation ID:
- 680
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This “work in progress” paper describes a multiyear project to study the development of engineering identity in a chemical and biological engineering program at Montana State University. The project focuses on how engineering identity may be impacted by a series of interventions utilizing subject material in a senior-level capstone design course and has the senior capstone design students serve as peer-mentors to first- and second-year students. A more rapid development of an engineering identity by first- and second-year students is suspected to increase retention and persistence in this engineering program. Through a series of timed interventions scheduled to take place in the first and second year, which includes cohorts that will serve as negative controls (no intervention), we hope to ascertain the following: (1) the extent to which, relative to a control group, exposure to a peer mentor increases a students’ engineering identity development over time compared to those who do not receive peer mentoring and (2) if the quantity and/or timing of the peer interactions impact engineering identity development. While the project includes interventions for both first- and second-year students, this work in progress paper focuses on the experiences of first year freshman as a result of the interventions and their development of an engineering identity over the course of the semester. Early in the fall semester, freshman chemical engineering students enrolled in an introductory chemical engineering course and senior students in a capstone design course were administered a survey which contained a validated instrument to assess engineering identity. The first-year course has 107 students and the senior-level course has 92 students and approximately 50% of the students in both cohorts completed the survey. Mid-semester, after the first-year students were introduced to the concepts of process flow diagrams and material balances in their course, senior design student teams gave presentations about their capstone design projects in the introductory course. The presentations focused on the project goals, design process and highlighted the process flow diagrams. After the presentations, freshman and senior students attended small group dinners as part of a homework assignment wherein the senior students were directed to communicate information about their design projects as well as share their experiences in the chemical engineering program. Dinners occurred overall several days, with up to ten freshman and five seniors attending each event. Freshman students were encouraged to use this time to discover more about the major, inquire about future course work, and learn about ways to enrich their educational experience through extracurricular and co-curricular activities. Several weeks after the dinner experience, senior students returned to give additional presentations to the freshman students to focus on the environmental and societal impacts of their design projects. We report baseline engineering identity in this paper.more » « less
-
Educating Engineering Students Innovatively (EESI, pronounced "easy") is a student support program for sophomores to seniors enrolled in an engineering major offered at the FAMU-FSU College of Engineering. The program is designed to: (1) foster a sense of community, (2) improve students’ engineering skill sets, and (3) provide each student with their direct path of interest from college to the STEM workforce. Universities spend much effort to provide student support programs for first-year students, such as summer bridge programs. However, sometimes upper-level students are not offered the same level of support and can fall off the STEM pathway. Introducing experiential learning experiences centered on the safe space (or community) of students provides a model to address underrepresentation in the STEM workforce and graduate school. This case study of an experiential learning program will provide an option for universities to consider underrepresented minority upperclassmen retention methods. We will present data for students enrolled in an engineering major between 2018-2021, considering students' gender, first-generation, and financial status. This paper will report the results of four (4) different cohorts of EESI Scholars who completed at least one semester in the student support program. We compare the retention rates, persistence, and academic performance of EESI Scholars compared with students that did not participate in the student support program as one measure of the program's success. Then we provide the best practices of the experiential learning program that led to students' persistence at ***** University. This paper could assist other colleges that would like to ensure Black students, who have been historically underrepresented in STEM, persistence in their engineering programs.more » « less
-
McFarland, Jenny (Ed.)University science, technology, engineering, and math (STEM) summer bridge programs provide incoming STEM university students additional course work and preparation before they begin their studies. These programs are designed to reduce attrition and increase the diversity of students pursuing STEM majors and STEM career paths. A meta-analysis of 16 STEM summer bridge programs was conducted. Results showed that program participation had a medium-sized effect on first-year overall grade point average ( d = 0.34) and first-year university retention (Odds Ratio [ OR] = 1.747). Although this meta-analytic research reflects a limited amount of available quantitative academic data on summer STEM bridge programs, this study nonetheless provides important quantitative inroads into much-needed research on programs’ objective effectiveness. These results articulate the importance of thoughtful experimental design and how further research might guide STEM bridge program development to increase the success and retention of matriculating STEM students.more » « less
-
null (Ed.)This research paper examines the influence of interpersonal interactions on the course-level persistence intentions of online undergraduate engineering students. Online learning is increasing in enrollment and importance in engineering education. Online courses also continue to confront issues with comparatively higher course dropout levels than face-to-face courses. This study correspondingly explores relevant student perceptions of their online course experiences to better understand the factors that contribute to students’ choices to remain in or drop out of their online undergraduate engineering courses. Data presented in this study were collected during fall 2019 and spring 2020 from three ABET-accredited online undergraduate engineering courses at a large southwestern public university: electrical engineering, engineering management, and software engineering. Participants were asked to respond to surveys at 12-time points during their 7.5-week online course. Each survey measured students’ perceptions of course LMS dialog, perceptions of instructor practices, and peer support for completing the course. Participants also reported their intentions to persist in the course during each survey administration. A multi-level modeling analysis revealed that LMS dialog, perceptions of instructor practices, and peer support are related to course persistence intentions. Time was also a significant predictor of persistence intentions and indicated that the course persistence intentions decrease towards the end of the course. Additionally, interactions between demographic variables and other predictors (perceptions of course LMS dialog, perceptions of instructor practices, and perceptions of peer support) were significant. With the increase in perceptions of course LMS dialog, perceptions of instructor practices, and perceptions of peer support, there was a relatively smaller increase in the persistence intentions of veterans than non-veterans. There is relatively more increase in the persistence intentions of females than males as their perceptions of instructor practices increase. Finally, increasing perceptions of peer support led to a relatively larger increase in the persistence intentions of non-transfer students than transfer students and a relatively smaller increase in persistence intentions of students working full-time than other students.more » « less
An official website of the United States government

