skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Review and critique of current testing protocols for upper-limb prostheses: a call for standardization amidst rapid technological advancements
This article provides a comprehensive narrative review of physical task-based assessments used to evaluate the multi-grasp dexterity and functional impact of varying control systems in pediatric and adult upper-limb prostheses. Our search returned 1,442 research articles from online databases, of which 25 tests—selected for their scientific rigor, evaluation metrics, and psychometric properties—met our review criteria. We observed that despite significant advancements in the mechatronics of upper-limb prostheses, these 25 assessments are the only validated evaluation methods that have emerged since the first measure in 1948. This not only underscores the lack of a consistently updated, standardized assessment protocol for new innovations, but also reveals an unsettling trend: as technology outpaces standardized evaluation measures, developers will often support their novel devices through custom, study-specific tests. These boutique assessments can potentially introduce bias and jeopardize validity. Furthermore, our analysis revealed that current validated evaluation methods often overlook the influence of competing interests on test success. Clinical settings and research laboratories differ in their time constraints, access to specialized equipment, and testing objectives, all of which significantly influence assessment selection and consistent use. Therefore, we propose a dual testing approach to address the varied demands of these distinct environments. Additionally, we found that almost all existing task-based assessments lack an integrated mechanism for collecting patient feedback, which we assert is essential for a holistic evaluation of upper-limb prostheses. Our review underscores the pressing need for a standardized evaluation protocol capable of objectively assessing the rapidly advancing prosthetic technologies across all testing domains.  more » « less
Award ID(s):
2152260
PAR ID:
10517694
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Robotics and AI
Volume:
10
ISSN:
2296-9144
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wearable smart devices have become ubiquitous in modern society, extensively researched for their health monitoring capabilities and convenience features. However, the “wearability” of these devices remains a relatively understudied area, particularly in terms of design informed by clinical trials. Wearable devices possess significant potential to enhance daily life, yet their success depends on understanding and validating the design factors that influence comfort, usability, and seamless integration into everyday routines. This review aimed to evaluate the “wearability” of smart devices through a mixed-methods scoping literature review. By analyzing studies on comfort, usability, and daily integration, it sought to identify design improvements and research gaps to enhance user experience and system design. From an initial pool of 130 publications (1998–2024), 19 studies met the inclusion criteria. The review identified three significant outcomes: (1) a lack of standardized assessment methods, (2) the predominance of qualitative over quantitative assessments, and (3) limited utility of findings for informing design. Although qualitative studies provide valuable insights, the absence of quantitative research hampers the development of validated, generalizable design criteria. This underscores the urgent need for future studies to adopt robust quantitative methodologies to better assess wearability and inform evidence-based design strategies. 
    more » « less
  2. Exposing students to low-quality assessments such as multiple-choice questions (MCQs) and short answer questions (SAQs) is detrimental to their learning, making it essential to accurately evaluate these assessments. Existing evaluation methods are often challenging to scale and fail to consider their pedagogical value within course materials. Online crowds offer a scalable and cost-effective source of intelligence, but often lack necessary domain expertise. Advancements in Large Language Models (LLMs) offer automation and scalability, but may also lack precise domain knowledge. To explore these trade-offs, we compare the effectiveness and reliability of crowdsourced and LLM-based methods for assessing the quality of 30 MCQs and SAQs across six educational domains using two standardized evaluation rubrics. We analyzed the performance of 84 crowdworkers from Amazon's Mechanical Turk and Prolific, comparing their quality evaluations to those made by the three LLMs: GPT-4, Gemini 1.5 Pro, and Claude 3 Opus. We found that crowdworkers on Prolific consistently delivered the highest-quality assessments, and GPT-4 emerged as the most effective LLM for this task. Our study reveals that while traditional crowdsourced methods often yield more accurate assessments, LLMs can match this accuracy in specific evaluative criteria. These results provide evidence for a hybrid approach to educational content evaluation, integrating the scalability of AI with the nuanced judgment of humans. We offer feasibility considerations in using AI to supplement human judgment in educational assessment. 
    more » « less
  3. Abstract Objective. Advanced robotic lower limb prostheses are mainly controlled autonomously. Although the existing control can assist cyclic movements during locomotion of amputee users, the function of these modern devices is still limited due to the lack of neuromuscular control (i.e. control based on human efferent neural signals from the central nervous system to peripheral muscles for movement production). Neuromuscular control signals can be recorded from muscles, called electromyographic (EMG) or myoelectric signals. In fact, using EMG signals for robotic lower limb prostheses control has been an emerging research topic in the field for the past decade to address novel prosthesis functionality and adaptability to different environments and task contexts. The objective of this paper is to review robotic lower limb Prosthesis control via EMG signals recorded from residual muscles in individuals with lower limb amputations. Approach. We performed a literature review on surgical techniques for enhanced EMG interfaces, EMG sensors, decoding algorithms, and control paradigms for robotic lower limb prostheses. Main results. This review highlights the promise of EMG control for enabling new functionalities in robotic lower limb prostheses, as well as the existing challenges, knowledge gaps, and opportunities on this research topic from human motor control and clinical practice perspectives. Significance. This review may guide the future collaborations among researchers in neuromechanics, neural engineering, assistive technologies, and amputee clinics in order to build and translate true bionic lower limbs to individuals with lower limb amputations for improved motor function. 
    more » « less
  4. ABSTRACT The PISA assessment 2022 of creative thinking was a moonshot effort that introduced significant advancements over existing creativity tests, including a broad range of domains (written, visual, social, and scientific), implementation in many languages, and sophisticated scoring methods. PISA 2022 demonstrated the general feasibility of assessing creative thinking ability comprehensively at an international scale. However, the complexity of its assessment approach—such as time‐consuming scoring requiring human raters—implies the risk that it may not be easily applied by the scientific community and practitioners. In this commentary, we outline important next steps building on the PISA assessment to further enhance future assessments of creative thinking. Crucial future directions include 1) determining what tasks and scorings ensure high psychometric quality including content validity, 2) enabling efficient, objective scoring by applying AI methods such as Large Language Models (LLMs), 3) ensuring high language accessibility via multilingual tests, 4) targeting a broader age group, and 5) facilitating standardized, reproducible assessments via an open online testing platform. In sum, these developments would lead to an efficient, validated multilingual test of creative thinking, which enhances the accessibility of effective creative thinking assessments and thereby supports the democratization and reproducibility of creativity research. 
    more » « less
  5. Challenges associated with current prosthetic technologies limit the quality of life of lower-limb amputees. Passive prostheses lead amputees to walk slower, use more energy, fall more often, and modify their gait patterns to compensate for the prosthesis' lack of net-positive mechanical energy. Robotic prostheses can provide mechanical energy, but may also introduce challenges through controller design. Fortunately, talented researchers are studying how to best control robotic leg prostheses, but the time and resources required to develop prosthetic hardware has limited their potential impact. Even after research is completed, comparison of results is confounded by the use of different, researcher-specific hardware. To address these issues, we have developed the Open-source Leg (OSL): a scalable robotic knee/ankle prosthesis intended to foster investigations of control strategies. This paper introduces the design goals, transmission selection, hardware implementation, and initial control benchmarks for the OSL. The OSL provides a common hardware platform for comparison of control strategies, lowers the barrier to entry for prosthesis research, and enables testing within the lab, community, and at home. 
    more » « less