Summary As global temperatures rise, improving crop yields will require enhancing the thermotolerance of crops. One approach for improving thermotolerance is using bioengineering to increase the thermostability of enzymes catalysing essential biological processes. Photorespiration is an essential recycling process in plants that is integral to photosynthesis and crop growth. The enzymes of photorespiration are targets for enhancing plant thermotolerance as this pathway limits carbon fixation at elevated temperatures. We explored the effects of temperature on the activity of the photorespiratory enzyme glycerate kinase (GLYK) from various organisms and the homologue from the thermophilic algaCyanidioschyzon merolaewas more thermotolerant than those from mesophilic plants, includingArabidopsis thaliana. To understand enzyme features underlying the thermotolerance ofC. merolaeGLYK (CmGLYK), we performed molecular dynamics simulations using AlphaFold‐predicted structures, which revealed greater movement of loop regions of mesophilic plant GLYKs at higher temperatures compared to CmGLYK. Based on these simulations, hybrid proteins were produced and analysed. These hybrid enzymes contained loop regions from CmGLYK replacing the most mobile corresponding loops of AtGLYK. Two of these hybrid enzymes had enhanced thermostability, with melting temperatures increased by 6 °C. One hybrid with three grafted loops maintained higher activity at elevated temperatures. Whilst this hybrid enzyme exhibited enhanced thermostability and a similar Kmfor ATP compared to AtGLYK, its Kmfor glycerate increased threefold. This study demonstrates that molecular dynamics simulation‐guided structure‐based recombination offers a promising strategy for enhancing the thermostability of other plant enzymes with possible application to increasing the thermotolerance of plants under warming climates.
more »
« less
Temperature-dependent iron motion in extremophile rubredoxins – no need for ‘corresponding states’
Abstract Extremophile organisms are known that can metabolize at temperatures down to − 25 °C (psychrophiles) and up to 122 °C (hyperthermophiles). Understanding viability under extreme conditions is relevant for human health, biotechnological applications, and our search for life elsewhere in the universe. Information about the stability and dynamics of proteins under environmental extremes is an important factor in this regard. Here we compare the dynamics of small Fe-S proteins – rubredoxins – from psychrophilic and hyperthermophilic microorganisms, using three different nuclear techniques as well as molecular dynamics calculations to quantify motion at the Fe site. The theory of ‘corresponding states’ posits that homologous proteins from different extremophiles have comparable flexibilities at the optimum growth temperatures of their respective organisms. Although ‘corresponding states’ would predict greater flexibility for rubredoxins that operate at low temperatures, we find that from 4 to 300 K, the dynamics of the Fe sites in these homologous proteins are essentially equivalent.
more »
« less
- Award ID(s):
- 2149122
- PAR ID:
- 10517717
- Editor(s):
- Soares, Cláudio
- Publisher / Repository:
- Nature Portfolio
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2045-2322
- Page Range / eLocation ID:
- 12197
- Subject(s) / Keyword(s):
- Rubredoxin, Iron-Sulfur Extremophile Hyperthermophile Psychrophile Corresponding States
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This work presents Neural Optimization for Melting-temperature Enabled by Leveraging Translation (NOMELT), a novel approach for designing and ranking high-temperature stable proteins using neural machine translation. The model, trained on over 4 million protein homologous pairs from organisms adapted to different temperatures, demonstrates promising capability in targeting thermal stability. A designed variant of theDrosophila melanogasterEngrailed Homeodomain shows a melting temperature increase of 15.5 K. Furthermore, NOMELT achieves zero-shot predictive capabilities in ranking experimental melting and half-activation temperatures across a number of protein families. It achieves this without requiring extensive homology data or massive training datasets as do existing zero-shot predictors by specifically learning thermophilicity, as opposed to all natural variation. These findings underscore the potential of leveraging organismal growth temperatures in context-dependent design of proteins for enhanced thermal stability.more » « less
-
Abstract The crystallization of hematite from precursor ferrihydrite was studied using time-resolved, angle-dispersive synchrotron X-ray diffraction in aqueous solutions at pH 10 and 11 and at temperatures ranging from 80 to 170 °C. Rietveld analyses revealed a non-classical crystallization pathway involving vacancy infilling by Fe as defective hematite nanocrystals evolved. At 90 °C and pH 11, incipient hematite particles exhibited an Fe site occupancy as low as 0.68(2), and after 30 min, Fe occupancy plateaued at 0.84(1), achieving a metastable steady state with a composition corresponding to “hydrohematite.” During crystal growth, unit-cell volume increased with an increase in Fe occupancy. The increase in Fe occupancy in hydrohematite was accomplished by deprotonation, resulting in a shortening of the long Fe-O(H) bonds and decreased distortion of the octahedral sites. Once the occupancy stabilized, the unit-cell volume contracted following further nanoparticle growth. Our study documented various synthetic routes to the formation of “hydrohematite” with an Fe vacancy of 10–20 mol% in the final product. The structure refined for synthetic hydrohematite at 90 °C and pH 11 closely matched that of natural hydrohematite from Salisbury, Connecticut, with a refined Fe occupancy of 0.83(2). Dry heating this natural hydrohematite generated anhydrous, stoichiometric hematite, again by continuous infilling of vacancies. The transformation initiated at 150 °C and was complete at 700 °C, and it was accompanied by the formation of a minor amorphous phase that served as a reservoir for Fe during the inoculation of the defective crystalline phase.more » « less
-
Organisms that live in different environments face different evolutionary pressures. As such, organisms that have more successful phenotypes reproduce more frequently, but differing selective pressures acting at the organismal level can influence genes, and thus proteins. Understanding how proteins adapt across environments may therefore be useful in engineering proteins for specific environments as well as to improve our understanding of basic biology. In this work, we explicitly compare homologous (read: paired) proteins from different environments. While previous studies have explored the relevant evolutionary pressures in one of these environments [11], [17] and genomic responses to those pressures [1], [28], no prior computational study of their proteins has been performed. We apply ESM-2 [20] and although there is no signal in our negative control (two divergent yeast strains) as expected, we obtain near perfect prediction accuracy for our selected environmental gradient–the well-established subsurface vs. surface biome. We further show that ESM-2 is able to capture relevant fine-grained biological patterns in its embedding space, even in its smallest model. Significantly, we demonstrate that these embeddings can be interpreted using a novel visualization pipeline built using explainable AI techniques.more » « less
-
Abstract Diatoms are important primary producers in the world's oceans, yet their growth is constrained in large regions by low bioavailable iron (Fe). Low‐Fe stress‐induced limitation of primary production is due to requirements for Fe in components of essential metabolic pathways including photosynthesis and other chloroplast plastid functions. Studies have shown that under low‐Fe stress, diatoms alter plastid‐specific processes, including components of electron transport. These physiological changes suggest changes of protein content and in protein abundances within the diatom plastid. While in silico predictions provide putative information on plastid‐localized proteins, knowledge of diatom plastid proteins remains limited in comparison to well‐studied model photosynthetic organisms. To address this, we employed shotgun proteomics to investigate the proteome of subcellular plastid‐enriched fractions fromThalassiosira pseudonanato gain a better understanding of how the plastid proteome is remodeled in response to Fe limitation. Using mass spectrometry‐based peptide identification and quantification, we analyzedT. pseudonanagrown under Fe‐replete and ‐limiting conditions. Through these analyses, we inferred the relative quantities of each protein, revealing that Fe limitation regulates major metabolic pathways in the plastid, including the Calvin cycle. Additionally, we observed changes in the expression of light‐harvesting proteins. In silico localization predictions of proteins identified in this plastid‐enriched proteome allowed for an in‐depth comparison of theoretical versus observed plastid‐localization, providing evidence for the potential of additional protein import pathways into the diatom plastid.more » « less
An official website of the United States government

