skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: In Situ Engineering of Inorganic‐Rich Solid Electrolyte Interphases via Anion Choice Enables Stable, Lithium Anodes
Abstract The discovery of liquid battery electrolytes that facilitate the formation of stable solid electrolyte interphases (SEIs) to mitigate dendrite formation is imperative to enable lithium anodes in next‐generation energy‐dense batteries. Compared to traditional electrolyte solvents, tetrahydrofuran (THF)‐based electrolyte systems have demonstrated great success in enabling high‐stability lithium anodes by encouraging the decomposition of anions (instead of organic solvent) and thus generating inorganic‐rich SEIs. Herein, by employing a variety of different lithium salts (i.e., LiPF6,LiTFSI, LiFSI, and LiDFOB), it is demonstrated that electrolyte anions modulate the inorganic composition and resulting properties of the SEI. Through novel analytical time‐of‐flight secondary‐ion mass spectrometry methods, such as hierarchical clustering of depth profiles and compositional analysis using integrated yields, the chemical composition and morphology of the SEIs generated from each electrolyte system are examined. Notably, the LiDFOB electrolyte provides an exceptionally stable system to enable lithium anodes, delivering >1500 cycles at a current density of 0.5 mAh g−1and a capacity of 0.5 mAh g−1in symmetrical cells. Furthermore, Li//LFP cells using this electrolyte demonstrate high‐rate, reversible lithium storage, supplying 139 mAh g(LFP)−1at C/2 (≈0.991 mAh cm−2, @ 0.61 mA cm−2) with 87.5% capacity retention over 300 cycles (average Coulombic efficiency >99.86%).  more » « less
Award ID(s):
1940986
PAR ID:
10517966
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Materials
Volume:
36
Issue:
9
ISSN:
0935-9648
Subject(s) / Keyword(s):
Lithium Batteries
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A new concentrated ternary salt ether‐based electrolyte enables stable cycling of lithium metal battery (LMB) cells with high‐mass‐loading (13.8 mg cm−2, 2.5 mAh cm−2) NMC622 (LiNi0.6Co0.2Mn0.2O2) cathodes and 50 μm Li anodes. Termed “CETHER‐3,” this electrolyte is based on LiTFSI, LiDFOB, and LiBF4with 5 vol% fluorinated ethylene carbonate in 1,2‐dimethoxyethane. Commercial carbonate and state‐of‐the‐art binary salt ether electrolytes were also tested as baselines. With CETHER‐3, the electrochemical performance of the full‐cell battery is among the most favorably reported in terms of high‐voltage cycling stability. For example, LiNixMnyCo1–x–yO2(NMC)‐Li metal cells retain 80% capacity at 430 cycles with a 4.4 V cut‐off and 83% capacity at 100 cycles with a 4.5 V cut‐off (charge at C/5, discharge at C/2). According to simulation by density functional theory and molecular dynamics, this favorable performance is an outcome of enhanced coordination between Li+and the solvent/salt molecules. Combining advanced microscopy (high‐resolution transmission electron microscopy, scanning electron microscopy) and surface science (X‐ray photoelectron spectroscopy, time‐of‐fight secondary ion mass spectroscopy, Fourier‐transform infrared spectroscopy, Raman spectroscopy), it is demonstrated that a thinner and more stable cathode electrolyte interphase (CEI) and solid electrolyte interphase (SEI) are formed. The CEI is rich in lithium sulfide (Li2SO3), while the SEI is rich in Li3N and LiF. During cycling, the CEI/SEI suppresses both the deleterious transformation of the cathode R‐3m layered near‐surface structure into disordered rock salt and the growth of lithium metal dendrites. 
    more » « less
  2. Abstract Practical applications of lithium metal batteries are often limited by low cycling efficiencies and uncontrolled lithium dendrite growth caused by unstable and heterogeneous lithium‐electrolyte interfaces. To address this issue, a calix[4]pyrrole‐based wavy covalent organic framework (WCOF) is developed that acts as a protective layer to suppress Li dendrite growth and reduce side reactions on the Li anode. The presentWCOFis porous and contains calix[4]pyrrole units acting as “molecular traps” that allow efficient PF6anion capture while allowing for uniform Li+diffusion. This provides structurally stable artificial protective layers that permit high Li+transference numbers. The resulting solid electrolyte interphases permit ultralong‐term stable cycling at a current density of 1 mA cm−2and reversible lithium plating/stripping (over 2500 h) at an areal capacity of 2 mAh cm−2. The protected anodes of this study also demonstrated excellent cell stability through 260 cycles when paired with high‐voltage cathodes (NCM811 with high mass loading: 20 mg cm−2). 
    more » « less
  3. Abstract Achieving durable lithium (Li) metal anodes in liquid electrolytes remains challenging, primarily due to the instability of the formed solid‐electrolyte interphases (SEIs). Modulating the Li‐ion solvation structures is pivotal in forming a stable SEI for stabilizing Li metal anodes. Here a strategy is developed to fine‐tune the Li‐ion solvation structures through enhanced dipole–dipole interactions between the Li‐ion‐coordinated solvent and the non‐Li‐ion‐coordinating diluent, for creating a stable SEI in the developed binary salt electrolyte. The enhanced dipole–dipole interactions weaken the coordination between Li‐ions and the solvents while strengthening the interaction between Li‐ions and dual anions, thereby facilitating the Li‐ion transport and a robust anion‐derived SEI with a distinct bilayer structure. Consequently, the developed electrolyte exhibited exceptional electrochemical performance in high energy‐density Li||LiNi0.8Mn0.1Co0.1O2 (NMC811) cells, with long calendar life, stable cyclability at 1 C, and reliable operation between 25 and −20 °C, and it also demonstrat remarkable cycling stability for a Li||NMC811 pouch cell with projected energy density of 402 Wh kg−1, maintaining 80% capacity retention over 606 cycles under practical conditions. 
    more » « less
  4. Abstract The interrelation is explored between external pressure (0.1, 1, and 10 MPa), solid electrolyte interphase (SEI) structure/morphology, and lithium metal plating/stripping behavior. To simulate anode‐free lithium metal batteries (AF‐LMBs) analysis is performed on “empty” Cu current collectors in standard carbonate electrolyte. Lower pressure promotes organic‐rich SEI and macroscopically heterogeneous, filament‐like Li electrodeposits interspersed with pores. Higher pressure promotes inorganic F‐rich SEI with more uniform and denser Li film. A “seeding layer” of lithiated pristine graphene (pG@Cu) favors an anion‐derived F‐rich SEI and promotes uniform metal electrodeposition, enabling extended electrochemical stability at a lower pressure. State‐of‐the‐art electrochemical performance is achieved at 1MPa: pG‐enabled half‐cell is stable after 300 h (50 cycles) at 1 mA cm−2rate −3 mAh cm−2capacity (17.5 µm plated/stripped), with cycling Coulombic efficiency (CE) of 99.8%. AF‐LMB cells with high mass loading NMC622 cathode (21 mg cm−2) undergo 200 cycles with a CE of 99.4% at C/5‐charge and C/2‐discharge (1C = 178 mAh g−1). Density functional theory (DFT) highlights the differences in the adsorption energy of solvated‐Li+onto various crystal planes of Cu (100), (110), and (111), versus lithiated/delithiated (0001) graphene, giving insight regarding the role of support surface energetics in promoting SEI heterogeneity. 
    more » « less
  5. LiMn0.6Fe0.4PO4has attracted attention as a promising, high-energy, and cost-effective alternative to LiFePO4(LFP) for lithium-ion batteries. However, its thermal stability, especially at full cell level, remains less understood compared to LFP. This study compares the cycling performance and thermal stability of LiMn0.6Fe0.4PO4/graphite and LFP/graphite pouch cells using a consistent electrolyte formulation: 1.2 m lithium bis(fluorosulfonyl)imide (LiFSI) in ethylene carbonate (EC):ethyl methyl carbonate (EMC):dimethyl carbonate (DMC) (25:5:70 by volume) with 2 wt% vinylene carbonate (VC). Thermal stability was evaluated with two ∼250 mAh pouch cells through accelerating rate calorimetry at elevated temperatures. After roughly 275 cycles at C/3 and 40 °C, the LFP/graphite cells retained 91% of their initial capacity, while LMFP/graphite cells retained 89%, indicating slightly better electrochemical stability for LFP cells. Exothermic reactions in LMFP cells initiated around 125 °C, compared to 140 °C for LFP, implying higher thermal vulnerability. Despite this, both cell types exhibited similar self-heating rates below 0.1 °C min−1, demonstrating strong safety performance. Overall, although LMFP offers a higher voltage window, its thermal stability and cycling performance still slightly lag behind LFP. 
    more » « less