Conical surfaces, with a δ function of Gaussian curvature at the apex, are perhaps the simplest example of geometric frustration. We study two-dimensional liquid crystals with p-fold rotational symmetry (p-atics) on the surfaces of cones. For free boundary conditions at the base, we find both the ground state(s) and a discrete ladder of metastable states as a function of both the cone angle and the liquid crystal symmetry p. We find that these states are characterized by a set of fractional defect charges at the apex and that the ground states are in general frustrated due to effects of parallel transport along the azimuthal direction of the cone. We check our predictions for the ground-state energies numerically for a set of commensurate cone angles (corresponding to a set of commensurate Gaussian curvatures concentrated at the cone apex), whose surfaces can be polygonized as a perfect triangular or squaremesh, and find excellent agreement with our theoretical predictions.
more »
« less
Interferometric geometric phases of PT -symmetric quantum mechanics
We present a generalization of the geometric phase to pure and thermal states in $$\mathcal{PT}$$-symmetric quantum mechanics (PTQM) based on the approach of the interferometric geometric phase (IGP). The formalism first introduces the parallel-transport conditions of quantum states and reveals two geometric phases, $$\theta^1$$ and $$\theta^2$$, for pure states in PTQM according to the states under parallel-transport. Due to the non-Hermitian Hamiltonian in PTQM, $$\theta^1$$ is complex and $$\theta^2$$ is its real part. The imaginary part of $$\theta^1$$ plays an important role when we generalize the IGP to thermal states in PTQM. The generalized IGP modifies the thermal distribution of a thermal state, thereby introducing effective temperatures. \textcolor{red}{At certain critical points, the generalized IGP may exhibit discrete jumps at finite temperatures, signaling a geometric phase transition. We illustrate the IGP of PTQM through two examples and compare their differences}.
more »
« less
- Award ID(s):
- 2310656
- PAR ID:
- 10517996
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review B
- Volume:
- 109
- Issue:
- 24
- ISSN:
- 2469-9950
- Page Range / eLocation ID:
- 245411
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Using large-scale density-matrix renormalzation group calculations and minimally augmented spin-wave theory, we demonstrate that the phase diagram of the quantum 𝑆=1/2 𝐽1–𝐽3 ferro-antiferromagnetic model on the honeycomb lattice differs dramatically from the classical one. It hosts the double-zigzag and Ising-𝑧 phases as unexpected intermediaries between ferromagnetic and zigzag states that are also extended beyond their classical regions of stability. In broad agreement with quantum order-by-disorder arguments, these collinear phases replace the classical spiral state.more » « less
-
The existence of a quantum critical point (QCP) and fluctuations around it are believed to be important for understanding the phase diagram in unconventional superconductors such as cuprates, iron pnictides, and heavy fermion superconductors. However, the QCP is usually buried deep within the superconducting dome and is difficult to investigate. The connection between quantum critical fluctuations and superconductivity remains an outstanding problem in condensed matter. Here combining both electrical transport and Nernst experiments, we explicitly demonstrate the onset of superconductivity at an unconventional QCP in gate-tuned monolayer tungsten ditelluride , with features incompatible with the conventional Bardeen-Cooper-Schrieffer scenario. The results lead to a superconducting phase diagram that is distinguished from other known superconductors. Two distinct gate-tuned quantum phase transitions are observed at the ends of the superconducting dome. We find that quantum fluctuations around the QCP of the underdoped regime are essential for understanding how the monolayer superconductivity is established. The unconventional phase diagram we report here illustrates a previously unknown relation between superconductivity and QCP. Published by the American Physical Society2025more » « less
-
Abstract Single crystals of the quasi-skutterudite compounds Ca3(Ir1-xRhx)4Sn13(3–4–13) were synthesized by flux growth and characterized by x-ray diffraction, energy dispersive x-ray spectroscopy, magnetization, resistivity, and radio frequency magnetic susceptibility techniques. The coexistence and competition between the charge density wave (CDW) and superconductivity was studied by varying the Rh/Ir ratio. The superconducting transition temperature, , varies from 7 K in pure Ir (x = 0) to 8.3 K in pure Rh (x = 1). Temperature-dependent electrical resistivity reveals monotonic suppression of the CDW transition temperature,TCDW(x). The CDW starts in pure Ir,x = 0, atTCDW≈ 40 K and extrapolates roughly linearly to zero at 0.53–0.58 under the superconducting dome. Magnetization and transport measurements show a significant influence of CDW on superconducting and normal states. Meissner expulsion is substantially reduced in the CDW region, indicating competition between the CDW and superconductivity. The low-temperature resistivity is higher in the CDW part of the phase diagram, consistent with the reduced density of states due to CDW gapping. Its temperature dependence just above shows signs of non-Fermi liquid behavior in a cone-like composition pattern. We conclude that the Ca3(Ir1-xRhx)4Sn13alloy is a good candidate for a composition-driven quantum critical point at ambient pressure.more » « less
-
The noncentrosymmetric Weyl semimetal PtBi2−x (t-PtBi2−x) exhibits various interesting technologically important physical properties. We report the experimental investigation of PtBi1.6 via second harmonic generation (SHG), single-crystal x-ray diffraction, magnetic susceptibility, and electrical resistivity measurements. While bulk structural, magnetic, and electrical properties show no phase transitions below room temperature, the temperature dependence of the SHG intensity reveals two anomalies: one at T ∗ ∼ 60 K and another at Tx ∼ 200 K. Quantitative analysis indicates that the SHG signal results from both the buckled Bi1 surface termination with the 3m symmetry and flat Bi2 surface termination with the m symmetry. However, the anomalies are mainly driven by Bi1 on the surface: (1) T ∗ marks the onset of surface states which is also manifested in the c-axis resistivity drop and (2) Tx corresponds to the lowest thermal contraction of the structure and enhanced magnetic susceptibility. This study demonstrates that SHG is a powerful technique for probing surface properties even for noncentrosymmetric materials.more » « less
An official website of the United States government

