skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Texture measurements on quartz single crystals to validate coordinate systems for neutron time-of-flight texture analysis
In crystallographic texture analysis, ensuring that sample directions are preserved from experiment to the resulting orientation distribution is crucial to obtain physical meaning from diffraction data. This work details a procedure to ensure instrument and sample coordinates are consistent when analyzing diffraction data with a Rietveld refinement using the texture analysis softwareMAUD. A quartz crystal is measured on the HIPPO diffractometer at Los Alamos National Laboratory for this purpose. The methods described here can be applied to any diffraction instrument measuring orientation distributions in polycrystalline materials.  more » « less
Award ID(s):
2154351
PAR ID:
10518024
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Journal of Applied Crystallography
Date Published:
Journal Name:
Journal of Applied Crystallography
Volume:
56
Issue:
6
ISSN:
1600-5767
Page Range / eLocation ID:
1764 to 1775
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ferroelectric (Hf,Zr)O2 thin films have attracted increased interest from the ferroelectrics community and the semiconductor industry due to their ability to exhibit ferroelectricity at nanoscale dimensions. The properties and performance of the ferroelectric (Hf,Zr)O2 films generally depend on various factors such as surface energy (e.g., through grain size or thickness), defects (e.g., through dopants, oxygen vacancies, or impurities), electrodes, interface quality, and preferred crystallographic orientation (also known as crystallographic texture or simply texture) of grains and/or domains. Although some factors affecting properties and performance have been studied extensively, the effects of texture on the material properties are still not understood. Here, the influence of texture of the bottom electrode and Hf0.5Zr0.5O2 (HZO) films on properties and performance is reported. The uniqueness of this work is the use of a consistent deposition process known as Sequential, No-Atmosphere Processing (SNAP) that produces films with different preferred orientations yet minimal other differences. The results shown in this study provide both new insight on the importance of the bottom electrode texture and new fundamental processing-structure–property relationships for the HZO films. 
    more » « less
  2. Mo 0.9 W 1.1 BC and ReWC 0.8 compositions have recently been identified to have exceptional hardness and incompressibility. In this work, these compositions are analyzed via in situ radial X-ray diffraction experiments to comparatively assess lattice strain and texture development. Traditionally, Earth scientists have employed these experiments to enhance understanding of dynamic activity within the deep Earth. However, nonhydrostatic compression experiments provide insight into materials with exceptional mechanical properties, as they help elucidate correlations between structural, elastic, and mechanical properties. Here, analysis of differential strain ( t / G ) and lattice preferred orientation in Mo 0.9 W 1.1 BC suggests that dislocation glide occurs along the (010) plane in orthorhombic Mo 0.9 W 1.1 BC. The (200) and (002) planes support the highest differential strain, while planes which bisect two or three axes, such as the (110) or (191), exhibit relatively lower differential strain. In ReWC 0.8 , which crystallizes in a cubic NaCl-type structure, planar density is correlated to orientation-dependent lattice strain as the low-density (311) plane elastically supports more differential strain than the denser (111), (200), and (220) planes. Furthermore, results indicate that ReWC 0.8 likely supports a higher differential stress t than Mo 0.9 W 1.1 BC and, based on a lack of texture development, bulk plastic yielding is not observed in ReWC 0.8 upon compression to ∼60 GPa. 
    more » « less
  3. null (Ed.)
    This work investigates the microstructure-property linkages in magnesium (Mg) with an emphasis on understanding interaction effects between the grain size, texture, and loading orientation. A single crys- tal plasticity framework endowed with experimentally informed micro Hall-Petch type relations for the activation thresholds for slip and twinning is adopted to resolve polycrystalline microstructures over a broad texture-grain size space. The macroscopic trends from the simulations corroborate with experi- ments. The synergistic effects of microstructural engineering on the micromechanical characteristics are mapped, which reveal their role in the emergent macroscopic behaviors. The simulations predict reduced extension twinning with grain size refinement even though the micro Hall-Petch coefficient for twinning is smaller than that for the non-basal slip modes. While grain refinement and textural weakening gen- erally reduce the net plastic anisotropy and tension-compression asymmetry, the degree to which these macroscopic behaviors are tempered depends on the loading orientation. The results offer preliminary insight into the roles that texture and grain size may play in the damage behavior of engineered Mg microstructures. 
    more » « less
  4. Multiphase materials are widely applied in engineering due to desirable mechanical properties and are of interest to geoscience as rocks are multiphase. High-pressure mechanical behavior is important for understanding the deep Earth where rocks deform at extreme pressure and temperature. In order to systematically study the underlying physics of multiphase deformation at high pressure, we perform diamond anvil cell deformation experiments on MgO + NaCl aggregates with varying phase proportions. Lattice strain and texture evolution are recorded using in-situ synchrotron x-ray diffraction and are modeled using two-phase elasto-viscoplastic self-consistent (EVPSC) simulations to deduce stress, strain, and deformation mechanisms in individual phases and the aggregate. Texture development of MgO and NaCl are affected by phase proportions. In NaCl, a (100) compression texture is observed when small amounts of MgO are present. In contrast, when deformed as a single phase or when large amounts of MgO are present, NaCl develops a (110) texture. Stress and strain evolution in MgO and NaCl also show different trends with varying phase proportions. Based on the results from this study, we construct a general scheme of stress evolution as a function of phase proportion for individual phases and the aggregate. 
    more » « less
  5. In this work, we investigate texture learning: the identification of textures learned by object classification models, and the extent to which they rely on these textures. We build texture-object associations that uncover new insights about the relationships between texture and object classes in CNNs and find three classes of results: associations that are strong and expected, strong and not expected, and expected but not present. Our analysis demonstrates that investigations in texture learning enable new methods for interpretability and have the potential to uncover unexpected biases. Code is available at https://github.com/blainehoak/ texture-learning. 
    more » « less