- Award ID(s):
- 2134248
- NSF-PAR ID:
- 10433853
- Date Published:
- Journal Name:
- The Journal of Supercomputing
- ISSN:
- 0920-8542
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Linear regression is a classic method of data analysis. In recent years, sketching—a method of dimension reduction using random sampling, random projections or both—has gained popularity as an effective computational approximation when the number of observations greatly exceeds the number of variables. In this paper, we address the following question: how does sketching affect the statistical properties of the solution and key quantities derived from it? To answer this question, we present a projector-based approach to sketched linear regression that is exact and that requires minimal assumptions on the sketching matrix. Therefore, downstream analyses hold exactly and generally for all sketching schemes. Additionally, a projector-based approach enables derivation of key quantities from classic linear regression that account for the combined model- and algorithm-induced uncertainties. We demonstrate the usefulness of a projector-based approach in quantifying and enabling insight on excess uncertainties and bias-variance decompositions for sketched linear regression. Finally, we demonstrate how the insights from our projector-based analyses can be used to produce practical sketching diagnostics to aid the design of judicious sketching schemes.more » « less
-
null (Ed.)Abstract Background Ridge regression is a regularization technique that penalizes the L2-norm of the coefficients in linear regression. One of the challenges of using ridge regression is the need to set a hyperparameter (α) that controls the amount of regularization. Cross-validation is typically used to select the best α from a set of candidates. However, efficient and appropriate selection of α can be challenging. This becomes prohibitive when large amounts of data are analyzed. Because the selected α depends on the scale of the data and correlations across predictors, it is also not straightforwardly interpretable. Results The present work addresses these challenges through a novel approach to ridge regression. We propose to reparameterize ridge regression in terms of the ratio γ between the L2-norms of the regularized and unregularized coefficients. We provide an algorithm that efficiently implements this approach, called fractional ridge regression, as well as open-source software implementations in Python and matlab (https://github.com/nrdg/fracridge). We show that the proposed method is fast and scalable for large-scale data problems. In brain imaging data, we demonstrate that this approach delivers results that are straightforward to interpret and compare across models and datasets. Conclusion Fractional ridge regression has several benefits: the solutions obtained for different γ are guaranteed to vary, guarding against wasted calculations; and automatically span the relevant range of regularization, avoiding the need for arduous manual exploration. These properties make fractional ridge regression particularly suitable for analysis of large complex datasets.more » « less
-
Abstract In statistics, the least absolute shrinkage and selection operator (Lasso) is a regression method that performs both variable selection and regularization. There is a lot of literature available, discussing the statistical properties of the regression coefficients estimated by the Lasso method. However, there lacks a comprehensive review discussing the algorithms to solve the optimization problem in Lasso. In this review, we summarize five representative algorithms to optimize the objective function in Lasso, including iterative shrinkage threshold algorithm (ISTA), fast iterative shrinkage‐thresholding algorithms (FISTA), coordinate gradient descent algorithm (CGDA), smooth L1 algorithm (SLA), and path following algorithm (PFA). Additionally, we also compare their convergence rate, as well as their potential strengths and weakness.
This article is categorized under:
Statistical Models > Linear Models
Algorithms and Computational Methods > Numerical Methods
Algorithms and Computational Methods > Computational Complexity
-
Summary We propose a new algorithm, DASSO, for fitting the entire coefficient path of the Dantzig selector with a similar computational cost to the least angle regression algorithm that is used to compute the lasso. DASSO efficiently constructs a piecewise linear path through a sequential simplex-like algorithm, which is remarkably similar to the least angle regression algorithm. Comparison of the two algorithms sheds new light on the question of how the lasso and Dantzig selector are related. In addition, we provide theoretical conditions on the design matrix X under which the lasso and Dantzig selector coefficient estimates will be identical for certain tuning parameters. As a consequence, in many instances, we can extend the powerful non-asymptotic bounds that have been developed for the Dantzig selector to the lasso. Finally, through empirical studies of simulated and real world data sets we show that in practice, when the bounds hold for the Dantzig selector, they almost always also hold for the lasso.
-
null (Ed.)Building a sketch of an n-by-n empirical kernel matrix is a common approach to accelerate the computation of many kernel methods. In this paper, we propose a unified framework of constructing sketching methods in kernel ridge regression (KRR), which views the sketching matrix S as an accumulation of m rescaled sub-sampling matrices with independent columns. Our framework incorporates two commonly used sketching methods, sub-sampling sketches (known as the Nyström method) and sub-Gaussian sketches, as special cases with m=1 and m=infinity respectively. Under the new framework, we provide a unified error analysis of sketching approximation and show that our accumulation scheme improves the low accuracy of sub-sampling sketches when certain incoherence characteristic is high, and accelerates the more accurate but computationally heavier sub-Gaussian sketches. By optimally choosing the number m of accumulations, we show that a best trade-off between computational efficiency and statistical accuracy can be achieved. In practice, the sketching method can be as efficiently implemented as the sub-sampling sketches, as only minor extra matrix additions are needed. Our empirical evaluations also demonstrate that the proposed method may attain the accuracy close to sub-Gaussian sketches, while is as efficient as sub-sampling-based sketches.more » « less