skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Learning, Tiny and Huge: Heterogeneous Model Augmentation Towards Federated Tiny Learning
Award ID(s):
2426318 2427316
PAR ID:
10518047
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-4534-6
Page Range / eLocation ID:
90 to 97
Format(s):
Medium: X
Location:
Jacksonville, FL, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Machine learning at the extreme edge has enabled a plethora of intelligent, time-critical, and remote applications. However, deploying interpretable artificial intelligence systems that can perform high-level symbolic reasoning and satisfy the underlying system rules and physics within the tight platform resource constraints is challenging. In this paper, we introduceTinyNS, the first platform-aware neurosymbolic architecture search framework for joint optimization of symbolic and neural operators.TinyNSprovides recipes and parsers to automatically write microcontroller code for five types of neurosymbolic models, combining the context awareness and integrity of symbolic techniques with the robustness and performance of machine learning models.TinyNSuses a fast, gradient-free, black-box Bayesian optimizer over discontinuous, conditional, numeric, and categorical search spaces to find the best synergy of symbolic code and neural networks within the hardware resource budget. To guarantee deployability,TinyNStalks to the target hardware during the optimization process. We showcase the utility ofTinyNSby deploying microcontroller-class neurosymbolic models through several case studies. In all use cases,TinyNSoutperforms purely neural or purely symbolic approaches while guaranteeing execution on real hardware. 
    more » « less
  3. This paper introduces a new data-structural object that we call the tiny pointer. In many applications, traditional\(\log n\)-bit pointers can be replaced with\(o(\log n)\)-bit tiny pointers at the cost of only a constant-factor time overhead and a small probability of failure. We develop a comprehensive theory of tiny pointers, and give optimal constructions for both fixed-size tiny pointers (i.e., settings in which all of the tiny pointers must be the same size) and variable-size tiny pointers (i.e., settings in which the average tiny-pointer size must be small, but some tiny pointers can be larger). If a tiny pointer references an item in an array filled to load factor\(1-\delta\), then the optimal tiny-pointer size is\(\Theta(\log\log\log n+\log\delta^{-1})\)bits in the fixed-size case, and\(\Theta(\log\delta^{-1})\)expected bits in the variable-size case. Our tiny-pointer constructions also require us to revisit several classic problems having to do with balls and bins; these results may be of independent interest. Using tiny pointers, we apply tiny pointers to five classic data-structure problems. We show that:A data structure storing\(n\)\(v\)-bit values for\(n\)keys with constant-factor time modifications/queries can be implemented to take space\(nv+O(n\log^{(r)}n)\)bits, for any constant\(r\gt0\), as long as the user stores a tiny pointer of expected size\(O(1)\)with each key—here,\(\log^{(r)}n\)is the\(r\)-th iterated logarithm.Any binary search tree can be made succinct, meaning that it achieves\((1+o(1))\)times the optimal space, with constant-factor time overhead, and can even be made to be within\(O(n)\)bits of optimal if we allow for\(O(\log^{*}n)\)-time modifications—this holds even for rotation-based trees such as the splay tree and the red-black tree.Any fixed-capacity key-value dictionary can be made stable (i.e., items do not move once inserted) with constant-factor time overhead and\((1+o(1))\)-factor space overhead.Any key-value dictionary that requires uniform-size values can be made to support arbitrary-size values with constant-factor time overhead and with an additional space consumption of\(\log^{(r)}n+O(\log j)\)bits per\(j\)-bit value for an arbitrary constant\(r\gt0\)of our choice.Given an external-memory array\(A\)of size\((1+\varepsilon)n\)containing a dynamic set of up to\(n\)key-value pairs, it is possible to maintain an internal-memory stash of size\(O(n\log\varepsilon^{-1})\)bits so that the location of any key-value pair in\(A\)can be computed in constant time (and with no IOs). In each case tiny pointers allow for us to take a natural space-inefficient solution that uses pointers and make it space-efficient for free. 
    more » « less
  4. This paper introduces a new data-structural object that we call the tiny pointer. In many applications, traditional log n-bit pointers can be replaced with o(log n)-bit tiny pointers at the cost of only a constant-factor time overhead and a small probability of failure. We develop a comprehensive theory of tiny pointers, and give optimal constructions for both fixed-size tiny pointers (i.e., settings in which all of the tiny pointers must be the same size) and variable-size tiny pointers (i.e., settings in which the average tiny-pointer size must be small, but some tiny pointers can be larger). If a tiny pointer references an element in an array filled to load factor 1 — δ, then the optimal tiny-pointer size is Θ(log log log n + log δ-1) bits in the fixed-size case, and Θ(log δ-1) expected bits in the variable-size case. Our tiny-pointer constructions also require us to revisit several classic problems having to do with balls and bins; these results may be of independent interest. Using tiny pointers, we revisit five classic data-structure problems. We show that: • A data structure storing n v-bit values for n keys with constant-time modifications/queries can be implemented to take space nv + O(n log(r) n) bits, for any constant r > 0, as long as the user stores a tiny pointer of expected size O(1) with each key—here, log(r) n is the r-th iterated logarithm. • Any binary search tree can be made succinct with constant-factor time overhead, and can even be made to be within O(n) bits of optimal if we allow for O(log* n)-time modifications—this holds even for rotation-based trees such as the splay tree and the red-black tree. • Any fixed-capacity key-value dictionary can be made stable (i.e., items do not move once inserted) with constant-time overhead and 1 + o(1) space overhead. • Any key-value dictionary that requires uniform-size values can be made to support arbitrary-size values with constant-time overhead and with an additional space consumption of log(r) n + O(log j) bits per j-bit value for an arbitrary constant r > 0 of our choice. • Given an external-memory array A of size (1 + ε)n containing a dynamic set of up to n key-value pairs, it is possible to maintain an internal-memory stash of size O(n log ε-1) bits so that the location of any key-value pair in A can be computed in constant time (and with no IOs). These are all well studied and classic problems, and in each case tiny pointers allow for us to take a natural space-inefficient solution that uses pointers and make it space-efficient for free. 
    more » « less