skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Signal Injection Attack Against Zero Involvement Pairing and Authentication for the Internet of Things
Zero Involvement Pairing and Authentication (ZIPA) is a promising technique for autoprovisioning large networks of Internet-of-Things (IoT) devices. In this work, we present the first successful signal injection attack on a ZIPA system. Most existing ZIPA systems assume there is a negligible amount of influence from the unsecured outside space on the secured inside space. In reality, environmental signals do leak from adjacent unsecured spaces and influence the environment of the secured space. Our attack takes advantage of this fact to perform a signal injection attack on the popular Schurmann & Sigg algorithm. The keys generated by the adversary with a signal injection attack at 95 dBA is within the standard error of the legitimate device.  more » « less
Award ID(s):
2107020
PAR ID:
10518067
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
DESTION 2024
Format(s):
Medium: X
Location:
Hong Kong, China
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, a monotonic power side-channel attack (PSA) is proposed to analyze the security vulnerabilities of flash analog-to-digital converters (ADC), where the digital output of a flash ADC is determined by characterizing the monotonic relationship between the traces of the power consumed and the applied input signals. A novel technique that leverages clock phase division is proposed to secure the power side channel information of a 4-bit flash ADC. The proposed technique adds randomness to decorrelate the input signal from the given power trace as the execution phase of each comparator depends on a thermometer code computed from the previous seven clock cycles. The monotonic PSA is executed on both a secured and unsecured ADC, with results indicating 1.9 bits of information leakage from an unprotected ADC and no data leakage from a protected ADC as the bit-wise accuracy is approximately 50% when secured. The monotonic PSA is more effective at attacking a flash ADC architecture than either a convolutional neural network based PSA or a correlation template PSA. The secured ADC core occupies approximately 2% more area than a non-secure ADC in a 65 nm process, and provides a sampling frequency of up to 500 MHz at a supply voltage of 1.2 V. Index Terms—power side-channel, ADC, 
    more » « less
  2. One of the effective ways of detecting malicious traffic in computer networks is intrusion detection systems (IDS). Though IDS identify malicious activities in a network, it might be difficult to detect distributed or coordinated attacks because they only have single vantage point. To combat this problem, cooperative intrusion detection system was proposed. In this detection system, nodes exchange attack features or signatures with a view of detecting an attack that has previously been detected by one of the other nodes in the system. Exchanging of attack features is necessary because a zero-day attacks (attacks without known signature) experienced in different locations are not the same. Although this solution enhanced the ability of a single IDS to respond to attacks that have been previously identified by cooperating nodes, malicious activities such as fake data injection, data manipulation or deletion and data consistency are problems threatening this approach. In this paper, we propose a solution that leverages blockchain’s distributive technology, tamper-proof ability and data immutability to detect and prevent malicious activities and solve data consistency problems facing cooperative intrusion detection. Focusing on extraction, storage and distribution stages of cooperative intrusion detection, we develop a blockchain-based solution that securely extracts features or signatures, adds extra verification step, makes storage of these signatures and features distributive and data sharing secured. Performance evaluation of the system with respect to its response time and resistance to the features/signatures injection is presented. The result shows that the proposed solution prevents stored attack features or signature against malicious data injection, manipulation or deletion and has low latency. 
    more » « less
  3. The majority of malicious mobile attacks take advantage of vulnerabilities in mobile software (applications), such as sensitive data leakage, unsecured sensitive data storage, data transmission, and many others. Most of these vulnerabilities can be detected by analyzing the mobile software. In this paper, we describe a tainted dataflow approach to detect mobile software security vulnerability, particularly, SQL Injection. 
    more » « less
  4. null (Ed.)
    Autonomous vehicles (AVs), equipped with numerous sensors such as camera, LiDAR, radar, and ultrasonic sensor, are revolutionizing the transportation industry. These sensors are expected to sense reliable information from a physical environment, facilitating the critical decision-making process of the AVs. Ultrasonic sensors, which detect obstacles in a short distance, play an important role in assisted parking and blind spot detection events. However, due to their weak security level, ultrasonic sensors are particularly vulnerable to signal injection attacks, when the attackers inject malicious acoustic signals to create fake obstacles and intentionally mislead the vehicles to make wrong decisions with disastrous aftermath. In this paper, we systematically analyze the attack model of signal injection attacks toward moving vehicles. By considering the potential threats, we propose SoundFence, a physical-layer defense system which leverages the sensors’ signal processing capability without requiring any additional equipment. SoundFence verifies the benign measurement results and detects signal injection attacks by analyzing sensor readings and the physical-layer signatures of ultrasonic signals. Our experiment with commercial sensors shows that SoundFence detects most (more than 95%) of the abnormal sensor readings with very few false alarms, and it can also accurately distinguish the real echo from injected signals to identify injection attacks. 
    more » « less
  5. Optimal Power Flow (OPF) is a crucial part of the Energy Management System (EMS) as it determines individual generator outputs that minimize generation cost while satisfying transmission, generation, and system level operating constraints. OPF relies on a core EMS routine, namely state estimation, which computes system states, principally bus voltages/phase angles at the buses. However, state estimation is vulnerable to false data injection attacks in which an adversary can alter certain measurements to corrupt the estimator's solution without being detected. It is also shown that a stealthy attack on state estimation can increase the OPF cost. However, the impact of stealthy attacks on the economic and secure operation of the system cannot be comprehensively analyzed due to the very large size of the attack space. In this paper, we present a hybrid framework that combines formal analytics with Simulink-based system modeling to investigate the feasibility of stealthy attacks and their influence on OPF in a time-efficient manner. The proposed approach is illustrated on synthetic case studies demonstrating the impact of stealthy attacks in different attack scenarios. We also evaluate the impact analysis time by running experiments on standard IEEE test cases and the results show significant scalability of the framework. 
    more » « less