Abstract The post-stishovite transition is a classic pseudo-proper typed ferroelastic transition with a symmetry-breaking spontaneous strain. This transition has been studied using high-pressure spontaneous strains, optic modes, and elastic moduli (Cij) based on the Landau modeling, but its atomistic information and structural distortion remain poorly understood. Here we have conducted synchrotron single-crystal X-ray diffraction measurements on stishovite crystals up to 75.3 GPa in a diamond-anvil cell. Analysis of the data reveals atomic positions, bond lengths, bond angles, and variations of SiO6 octahedra across the transition at high pressure. Our results show that the O coordinates split at ~51.4 GPa, where the apical and equatorial Si-O bond lengths cross over, the SiO6 octahedral distortion vanishes, and the SiO6 octahedra start to rotate about the c axis. Moreover, distortion mode analysis shows that an in-plane stretching distortion (GM1+ mode) occurs in the stishovite structure at high pressure while a rotational distortion (GM2+ mode) becomes dominant in the post-stishovite structure. These results are used to correlate with elastic moduli and Landau parameters (symmetry-breaking strain e1–e2 and order parameter Q) to provide atomistic insight into the ferroelastic transition. When the bond lengths of two Si-O bonds are equal due to the contribution from the GM1+ stretching mode, C11 converges with C12, and the shear wave VS1[110] polarizing along [110] and propagating along [110] vanishes. Values of e1–e2 and Q are proportional to the SiO6 rotation angle from the occurrence of the GM1+ rotational mode in the post-stishovite structure. Our results on the pseudo-proper type transition are also compared with that for the proper type in albite and improper type in CaSiO3 perovskite. The symmetry-breaking strain, in all these types of transitions, arises as the primary effect from the structural angle (such as SiO6 rotation or lattice constant angle) and its relevant distortion mode in the low-symmetry ferroelastic phase.
more »
« less
Single-crystal X-ray diffraction on the structure of (Al,Fe)-bearing bridgmanite in the lower mantle
Abstract Here we have performed single-crystal X-ray diffraction (SCXRD) experiments on two high-quality crystal platelets of (Al,Fe)-bearing bridgmanite (Mg0.88Fe0.0653+Fe0.0352+Al0.03)(Al0.11Si0.90)O3 (Fe10-Al14-Bgm) up to 64.6(6) GPa at room temperature in a Boehler-Almax type diamond-anvil cell. Refinements on the collected SCXRD patterns reveal reliable structural information of single-crystal Fe10-Al14-Bgm, including unit-cell parameters, atomic coordinates, and anisotropic displacement parameters. Together with Mössbauer and electron microprobe analyses, our best single-crystal refinement model indicates that the sample contains ~6.5 mol% Fe3+, 3.5 mol% Fe2+, and 3 mol% Al3+ in the large pseudo-dodecahedral site (A site), and ~11 mol% Al3+ in the small octahedral site (B site). This may indicate that Al3+ in bridgmanite preferentially occupies the B site. Our results show that the compression of Fe10-Al14-Bgm with pressure causes monotonical decreases in the volumes of AO12 pseudo-dodecahedron and BO6 octahedron (VA and VB, respectively) as well as the associated A-O and B-O bond lengths. The interatomic angles of B-O1-B and B-O2-B decrease from 145.2–145.8° at 4.2(1) GPa to 143.3–143.5° at 64.6(6) GPa. Quantitative calculations of octahedral tilting angles (Ф) show that Ф increases smoothly with pressure. We found a linear relationship between the polyhedral volume ratio and the Ф in the bridgmanite with different compositions: VA/VB = –0.049Φ + 5.549. Our results indicate an increased distortion of the Fe10-Al14-Bgm structure with pressure, which might be related to the distortion of A-site Fe2+. The local environmental changes of A-site Fe2+ in bridgmanite could explain previous results on the hyperfine parameters, abnormal lattice thermal conductivity, mean force constant of iron bonds and other physical properties, which in turn provide insights into our understanding on the geophysics and geochemistry of the planet.
more »
« less
- Award ID(s):
- 2001381
- PAR ID:
- 10518093
- Publisher / Repository:
- American Mineralogist
- Date Published:
- Journal Name:
- American Mineralogist
- Volume:
- 109
- Issue:
- 5
- ISSN:
- 0003-004X
- Page Range / eLocation ID:
- 872 to 881
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Bridgmanite, the most abundant mineral in the lower mantle, can play an essential role in deep-Earth hydrogen storage and circulation processes. To better evaluate the hydrogen storage capacity and its substitution mechanism in bridgmanite occurring in nature, we have synthesized high-quality single-crystal bridgmanite with a composition of (Mg0.88Fe0.052+Fe0.053+Al0.03)(Si0.88Al0.11H0.01)O3 at nearly water-saturated environments relevant to topmost lower mantle pressure and temperature conditions. The crystallographic site position of hydrogen in the synthetic (Fe,Al)-bearing bridgmanite is evaluated by a time-of-flight single-crystal neutron diffraction scheme, together with supporting evidence from polarized infrared spectroscopy. Analysis of the results shows that the primary hydrogen site has an OH bond direction nearly parallel to the crystallographic b axis of the orthorhombic bridgmanite lattice, where hydrogen is located along the line between two oxygen anions to form a straight geometry of covalent and hydrogen bonds. Our modeled results show that hydrogen is incorporated into the crystal structure via coupled substitution of Al3+ and H+ simultaneously exchanging for Si4+, which does not require any cation vacancy. The concentration of hydrogen evaluated by secondary-ion mass spectrometry and neutron diffraction is ~0.1 wt% H2O and consistent with each other, showing that neutron diffraction can be an alternative quantitative means for the characterization of trace amounts of hydrogen and its site occupancy in nominally anhydrous minerals.more » « less
-
Abstract Thermoelastic properties of mantle candidate minerals are essential to our understanding of geophysical phenomena, geochemistry, and geodynamic evolutions of the silicate Earth. However, the lower-mantle mineralogy remains much debated due to the lack of single-crystal elastic moduli (Cij) and aggregate sound velocities of (Al,Fe)-bearing bridgmanite, the most abundant mineral of the planet, at the lower mantle pressure-temperature (P-T) conditions. Here we report single-crystal Cij of (Al,Fe)-bearing bridgmanite, Mg0.88Fe0.1Al0.14Si0.90O3 (Fe10-Al14-Bgm) with Fe3+/ΣFe = ~0.65, up to ~82 GPa using X-ray diffraction (XRD), Brillouin light scattering (BLS), and impulsive stimulated light scattering (ISLS) measurements in diamond-anvil cells (DACs). Two crystal platelets with orientations of (–0.50, 0.05, –0.86) and (0.65, –0.59, 0.48), that are sensitive to deriving all nine Cij, are used for compressional and shear wave velocity (νP and νS) measurements as a function of azimuthal angles over 200° at each experimental pressure. Our results show that all Cij of singe-crystal Fe10-Al14-Bgm increase monotonically with pressure with small uncertainties of 1–2% (±1σ), except C55 and C23, which have uncertainties of 3–4%. Using the third-order Eulerian finite-strain equations to model the elasticity data yields the aggregate adiabatic bulk and shear moduli and respective pressure derivatives at the reference pressure of 25 GPa: KS = 326 ± 4 GPa, µ = 211 ± 2 GPa, KS′ = 3.32 ± 0.04, and µ′ = 1.66 ± 0.02 GPa. The high-pressure aggregate νS and νP of Fe10-Al14-Bgm are 2.6–3.5% and 3.1–4.7% lower than those of MgSiO3 bridgmanite end-member, respectively. These data are used with literature reports on bridgmanite with different Fe and Al contents to quantitatively evaluate pressure and compositional effects on their elastic properties. Comparing with one-dimensional seismic profiles, our modeled velocity profiles of major lower-mantle mineral assemblages at relevant P-T suggest that the lower mantle could likely consist of about 89 vol% (Al,Fe)-bearing bridgmanite. After considering uncertainties, our best-fit model is still indistinguishable from pyrolitic or chondritic models.more » « less
-
null (Ed.)Abstract Electronic states of iron in the lower mantle's dominant mineral, (Mg,Fe,Al)(Fe,Al,Si)O3 bridgmanite, control physical properties of the mantle including density, elasticity, and electrical and thermal conductivity. However, the determination of electronic states of iron has been controversial, in part due to different interpretations of Mössbauer spectroscopy results used to identify spin state, valence state, and site occupancy of iron. We applied energy-domain Mössbauer spectroscopy to a set of four bridgmanite samples spanning a wide range of compositions: 10–50% Fe/total cations, 0–25% Al/total cations, 12–100% Fe3+/total Fe. Measurements performed in the diamond-anvil cell at pressures up to 76 GPa below and above the high to low spin transition in Fe3+ provide a Mössbauer reference library for bridgmanite and demonstrate the effects of pressure and composition on electronic states of iron. Results indicate that although the spin transition in Fe3+ in the bridgmanite B-site occurs as predicted, it does not strongly affect the observed quadrupole splitting of 1.4 mm/s, and only decreases center shift for this site to 0 mm/s at ~70 GPa. Thus center shift can easily distinguish Fe3+ from Fe2+ at high pressure, which exhibits two distinct Mössbauer sites with center shift ~1 mm/s and quadrupole splitting 2.4–3.1 and 3.9 mm/s at ~70 GPa. Correct quantification of Fe3+/total Fe in bridgmanite is required to constrain the effects of composition and redox states in experimental measurements of seismic properties of bridgmanite. In Fe-rich, mixed-valence bridgmanite at deep-mantle-relevant pressures, up to ~20% of the Fe may be a Fe2.5+ charge transfer component, which should enhance electrical and thermal conductivity in Fe-rich heterogeneities at the base of Earth's mantle.more » « less
-
Abstract Hydroxylation of wadsleyite, β-(Mg,Fe)2SiO4, is associated with divalent cation defects and well known to affect its physical properties. However, an atomic-scale understanding of the defect structure and hydrogen bonding at high pressures is needed to interpret the influence of water on the behavior of wadsleyite in the mantle transition zone. We have determined the pressure evolution of the wadsleyite crystal symmetry and structure, including all O∙∙∙O interatomic distances, up to 32 GPa using single-crystal X-ray diffraction on two well-characterized, Fe-bearing (Fo90) samples containing 0.25(4) and 2.0(2) wt% H2O. Both compositions undergo a pressure-dependent monoclinic distortion from orthorhombic symmetry above 9 GPa, with the less hydrous sample showing a larger increase in distortion at increased pressures due to the difference in compressibility of the split M3 site in the monoclinic setting arising from preferred vacancy ordering at the M3B site. Although hydrogen positions cannot be modeled from the X-ray diffraction data, the pressure evolution of the longer O1∙∙∙O4 distance in the structure characterizes the primary hydrogen bond length. We observe the hydrogen-bonded O1∙∙∙O4 distance shorten gradually from 3.080(1) Å at ambient pressure to about 2.90(1) Å at 25 GPa, being still much longer than is defined as strong hydrogen bonding (2.5–2.7 Å). Above 25 GPa and up to the maximum pressure of the experiment at 32.5 GPa, the hydrogen-bonded O1∙∙∙O4 distance decreases no further, despite the fact that previous spectroscopic studies have shown that the primary O-H stretching frequencies continuously drop into the regime of strong hydrogen bonding (<3200 cm–1) above ~15 GPa. We propose that the primary O1-H∙∙∙O4 hydrogen bond in wadsleyite becomes highly nonlinear at high pressures based on its deviation from frequency-distance correlations for linear hydrogen bonds. One possible explanation is that the hydrogen position shifts from being nearly on the long O1-O4 edge of the M3 site to a position more above O1 along the c-axis.more » « less
An official website of the United States government

