This dataset includes monthly dissolved silicon (DSi) concentration data from 198 rivers across the Northern Hemisphere. Concentration and discharge data were sourced from public and/or published datasets and the Weighted Regressions on Time, Discharge, and Season model (Hirsch et al. 2010) was used to estimate monthly concentrations and flow-normalized concentrations for all sites over their period of record. Sites span eight climate zones, ranged from 18 degrees N to 70 degrees N, and vary in drainage area from < 1 km2 to nearly 3 million km2. These monthly concentration data were then used to cluster sites into average (i.e., average of all years) and annual (i.e., each year individually) seasonal regimes using a time-series clustering approach. The annual regimes were used to quantify how often a site moved among regimes over its period of record (i.e., stability). Site characteristics including climate zone, discharge, and concentration-discharge behavior were explored as potential drivers of cluster membership and stability. 
                        more » 
                        « less   
                    
                            
                            Dissolved silicon concentration and yield estimates from streams and rivers in North America and Antarctica,1964-2021
                        
                    
    
            These data include dissolved silicon concentration and yield from 60 rivers across North America, the Caribbean, and Antarctica from 1964-2021 and are associated with the publication “Long-term change in concentration and yield of riverine dissolved silicon from the poles to the tropics”. Data were compiled from multiple public sources including the Long-term Ecological Research Network, Great Arctic Rivers Observatory, Upper Mississippi River Restoration program, and the U.S. Geological Survey. Concentration and yield estimates were generated by the Weighted Regressions on Time, Discharge and Season model (WRTDS; Hirsch et al. 2010). The dataset includes six files: discrete dissolved silicon data and daily discharge data used as inputs to WRTDS; annual estimates of discharge, concentration, and yield for all rivers; monthly estimates of discharge, concentration, and yield for all rivers; long-term trends in concentration and yield; and a file containing coordinates and drainage area information for each site. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10518130
- Publisher / Repository:
- U.S. Geological Survey
- Date Published:
- Subject(s) / Keyword(s):
- Water Resources
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Riverine exports of silicon (Si) influence global carbon cycling through the growth of marine diatoms, which account for ∼25% of global primary production. Climate change will likely alter river Si exports in biome‐specific ways due to interacting shifts in chemical weathering rates, hydrologic connectivity, and metabolic processes in aquatic and terrestrial systems. Nonetheless, factors driving long‐term changes in Si exports remain unexplored at local, regional, and global scales. We evaluated how concentrations and yields of dissolved Si (DSi) changed over the last several decades of rapid climate warming using long‐term data sets from 60 rivers and streams spanning the globe (e.g., Antarctic, tropical, temperate, boreal, alpine, Arctic systems). We show that widespread changes in river DSi concentration and yield have occurred, with the most substantial shifts occurring in alpine and polar regions. The magnitude and direction of trends varied within and among biomes, were most strongly associated with differences in land cover, and were often independent of changes in river discharge. These findings indicate that there are likely diverse mechanisms driving change in river Si biogeochemistry that span the land‐water interface, which may include glacial melt, changes in terrestrial vegetation, and river productivity. Finally, trends were often stronger in months outside of the growing season, particularly in temperate and boreal systems, demonstrating a potentially important role of shifting seasonality for the flux of Si from rivers. Our results have implications for the timing and magnitude of silica processing in rivers and its delivery to global oceans.more » « less
- 
            Expansion (version 2.0) of the original Land2Sea database of exorheic rivers (Peucker-Ehrenbrink, 2009, doi:10.1029/2008GC002356) that contains information on 1519 rivers, with additional literature estimates of basin size, water discharge (runoff) under current conditions and prior to human intervention, suspended sediment discharge under current conditions and prior to human intervention, estimate of sediment bedload flux, dissolved strontium concentration and radiogenic isotope value as well as particulate (silt or clay) neodymium concentration, isotope composition and Nd model ages. A large addition to the original river database that contains a significant amount of data from the compilation of Meybeck and Ragu (1996) is from Milliman and Farnsworth (2011). The compilation is not yet geo-referenced. The 2156 rivers are sorted alphabetically within each large-scale drainage region (Graham et al., 1999, 2000). In addition, the compilation includes data on sizes of, and sediment discharge from 48 small islands in Oceania with very high sediment yields. Any errors in transcribing data or converting units from their primary sources into this compilation are entirely mine. Acknowledgements: BPE acknowledges financial support from NSR-EAR-0087697, -0125873, -1226818 and ICER-1639557, as well as from WHOI's Investment in Research and Development Fund.more » « less
- 
            We collected this data to better understand the timing of peak benthic cyanobacterial mat occurrence (specifically taxa associated with anatoxin production, Microcoleus and Anabaena) and mat anatoxin concentrations in rivers. We sampled in northern California on the South Fork Eel, Salmon, and Russian Rivers biweekly in 2022, and the Salmon River biweekly and South Fork Eel weekly in 2023. During each sampling event, we conducted benthic cover surveys, measured in-situ water quality parameters (temperature, pH, dissolved oxygen, conductivity), and collected surface water samples and targeted cyanobacteria samples. In 2022 on all rivers and in 2023 at the Salmon River, we also collected distributed non-targeted periphyton samples to characterize full-reach community compositions. All sampling was completed in 150-m reaches upstream of sensors recording continuous dissolved oxygen, conductivity, and temperature data. We analyzed surface water samples for nitrate, ammonium, soluble reactive phosphate, total dissolved carbon, and dissolved organic carbon. We also analyzed surface water samples from 2022 for major anions (Cl, SO4, Br) and cations (Na, K, Mg, Ca). Targeted-cyanobacteria and non-target periphyton samples were analyzed for anatoxins, relative abundance of algal taxa (via microscopy), ash-free dry mass, and chlorophyll-a. To estimate mean river depth within the dissolved oxygen footprint upstream of sensors, we kayaked portions of the river and collected river depth measurements. We also measured discharge at each river excluding the Salmon River (due to high discharge) and completed pebble counts at the South Fork Eel River to obtain sediment grain size distributions.more » « less
- 
            null (Ed.)Abstract Groundwater-derived solute fluxes to the ocean have long been assumed static and subordinate to riverine fluxes, if not neglected entirely, in marine isotope budgets. Here we present concentration and isotope data for Li, Mg, Ca, Sr, and Ba in coastal groundwaters to constrain the importance of groundwater discharge in mediating the magnitude and isotopic composition of terrestrially derived solute fluxes to the ocean. Data were extrapolated globally using three independent volumetric estimates of groundwater discharge to coastal waters, from which we estimate that groundwater-derived solute fluxes represent, at a minimum, 5% of riverine fluxes for Li, Mg, Ca, Sr, and Ba. The isotopic compositions of the groundwater-derived Mg, Ca, and Sr fluxes are distinct from global riverine averages, while Li and Ba fluxes are isotopically indistinguishable from rivers. These differences reflect a strong dependence on coastal lithology that should be considered a priority for parameterization in Earth-system models.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
