skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Surfperches versus Damselfishes: Trophic Evolution in Closely Related Pharyngognath Fishes with Highly Divergent Reproductive Strategies
Synopsis Surfperches and damselfishes are very closely related ovalentarians with large reproductive differences. Damselfishes are typical of most Ovalentaria in that they lay demersal eggs that hatch into small, free-feeding larvae. Surfperches are unusual among ovalentarians and most acanthomorphs in having prolonged internal development. They are born at an advanced stage, some as adults, and bypass the need to actively feed throughout an extended period of ontogeny. Damselfishes and surfperches possess the same modifications of the fifth branchial arch that allow them to perform advanced food processing within the pharynx. This condition (pharyngognathy) has large effects on the evolution of feeding mechanics and trophic ecology. Although the evolution of pharyngognaths has received considerable attention, the effects of different reproductive strategies on their diversification have not been examined. We compared head shape evolution in surfperches and damselfishes using geometric morphometrics, principal component analyses, and multiple phylogenetic-comparative techniques. We found that they have similar mean head shapes, that their primary axes of shape variation are comparable and distinguish benthic-feeding and pelagic-feeding forms in each case, and that, despite large differences in crown divergence times, their head shape disparities are not significantly different. Several lines of evidence suggest that evolution has been more constrained in damselfishes: Head shape is evolving faster in surfperches, more anatomical traits have undergone correlated evolution in damselfishes, there is significant phylogenetic signal in damselfish evolution (but not surfperches), and damselfishes exhibit significant allometry in head shape that is not present in surfperches.  more » « less
Award ID(s):
2054285
PAR ID:
10518218
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Integrative Organismal Biology
Volume:
6
Issue:
1
ISSN:
2517-4843
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Aguirre, Windsor E. (Ed.)
    The damselfishes (family Pomacentridae) inhabit near-shore communities in tropical and temperature oceans as one of the major lineages in coral reef fish assemblages. Our understanding of their evolutionary ecology, morphology and function has often been advanced by increasingly detailed and accurate molecular phylogenies. Here we present the next stage of multi-locus, molecular phylogenetics for the group based on analysis of 12 nuclear and mitochondrial gene sequences from 345 of the 422 damselfishes. The resulting well-resolved phylogeny helps to address several important questions about higher-level damselfish relationships, their evolutionary history and patterns of divergence. A time-calibrated phylogenetic tree yields a root age for the family of 55.5 mya, refines the age of origin for a number of diverse genera, and shows that ecological changes during the Eocene-Oligocene transition provided opportunities for damselfish diversification. We explored the idea that body size extremes have evolved repeatedly among the Pomacentridae, and demonstrate that large and small body sizes have evolved independently at least 40 times and with asymmetric rates of transition among size classes. We tested the hypothesis that transitions among dietary ecotypes (benthic herbivory, pelagic planktivory and intermediate omnivory) are asymmetric, with higher transition rates from intermediate omnivory to either planktivory or herbivory. Using multistate hidden-state speciation and extinction models, we found that both body size and dietary ecotype are significantly associated with patterns of diversification across the damselfishes, and that the highest rates of net diversification are associated with medium body size and pelagic planktivory. We also conclude that the pattern of evolutionary diversification in feeding ecology, with frequent and asymmetrical transitions between feeding ecotypes, is largely restricted to the subfamily Pomacentrinae in the Indo-West Pacific. Trait diversification patterns for damselfishes across a fully resolved phylogeny challenge many recent general conclusions about the evolution of reef fishes. 
    more » « less
  2. Synopsis By linking anatomical structure to mechanical performance we can improve our understanding of how selection shapes morphology. Here we examined the functional morphology of feeding in fishes of the subfamily Danioninae (order Cypriniformes) to determine aspects of cranial evolution connected with their trophic diversification. The Danioninae comprise three major lineages and each employs a different feeding strategy. We gathered data on skull form and function from species in each clade, then assessed their evolutionary dynamics using phylogenetic-comparative methods. Differences between clades are strongly associated with differences in jaw protrusion. The paedomorphic Danionella clade does not use jaw protrusion at all, members of the Danio clade use jaw protrusion for suction production and prey capture, and members of the sister clade to Danio (e.g., Devario and Microdevario) use jaw protrusion to retain prey after capture. The shape of the premaxillary bone is a major determinant of protrusion ability, and premaxilla morphology in each of these lineages is consistent with their protrusion strategies. Premaxilla shapes have evolved rapidly, which indicates that they have been subjected to strong selection. We compared premaxilla development in giant danio (Devario aequipinnatus) and zebrafish (Danio rerio) and discuss a developmental mechanism that could shift danionine fishes between the feeding strategies employed by these species and their respective clades. We also identified a highly integrated evolutionary module that has been an important factor in the evolution of trophic mechanics within the Danioninae. 
    more » « less
  3. Abstract Size and shape are often considered important variables that lead to variation in performance. In studies of feeding, size‐corrected metrics of the skull are often used as proxies of biting performance; however, few studies have examined the relationship between cranial shape in its entirety and estimated bite force across species and how dietary ecologies may affect these variables differently. Here, we used geometric morphometric and phylogenetic comparative approaches to examine relationships between cranial morphology and estimated bite force in the carnivoran clade Musteloidea. We found a strong relationship between cranial size and estimated bite force but did not find a significant relationship between cranial shape and size‐corrected estimated bite force. Many‐to‐one mapping of form to function may explain this pattern because a variety of evolutionary shape changes rather than a single shape change may have contributed to an increase in relative biting ability. We also found that dietary ecologies influenced cranial shape evolution but did not influence cranial size nor size‐corrected bite force evolution. Although musteloids with different diets exhibit variation in cranial shapes, they have similar estimated bite forces suggesting that other feeding performance metrics and potentially nonfeeding traits are also important contributors to cranial evolution. We postulate that axial and appendicular adaptations and the interesting feeding behaviours reported for species within this group also facilitate different dietary ecologies between species. Future work integrating cranial, axial and appendicular form and function with behavioural observations will reveal further insights into the evolution of dietary ecologies and other ecological variables. 
    more » « less
  4. Since Darwin, biologists have sought to understand the evolution and origins of phenotypic adaptations. The skull is particularly diverse due to intense natural selection on feeding biomechanics. We investigated the genetic and molecular origins of trophic adaptation using Lake Malawi cichlids, which have undergone an exemplary evolutionary radiation. We analyzed morphological differences in the lateral and ventral head shape among an insectivore that eats by suction feeding, an obligate biting herbivore, and their F2 hybrids. We identified variation in a series of morphological traits—including mandible width, mandible length, and buccal length—that directly affect feeding kinematics and function. Using quantitative trait loci (QTL) mapping, we found that many genes of small effects influence these craniofacial adaptations. Intervals for some traits were enriched in genes related to potassium transport and sensory systems, the latter suggesting co-evolution of feeding structures and sensory adaptations for foraging. Despite these indications of co-evolution of structures, morphological traits did not show covariation. Furthermore, phenotypes largely mapped to distinct genetic intervals, suggesting that a common genetic basis does not generate coordinated changes in shape. Together, these suggest that craniofacial traits are mostly inherited as separate modules, which confers a high potential for the evolution of morphological diversity. Though these traits are not restricted by genetic pleiotropy, functional demands of feeding and sensory structures likely introduce constraints on variation. In all, we provide insights into the quantitative genetic basis of trophic adaptation, identify mechanisms that influence the direction of morphological evolution, and provide molecular inroads to craniofacial variation. 
    more » « less
  5. Despite their miniature brains, insects exhibit substantial variation in brain size. Although the functional significance of this variation is increasingly recognized, research on whether differences in insect brain sizes are mainly the result of constraints or selective pressures has hardly been performed. Here, we address this gap by combining prospective and retrospective phylogenetic-based analyses of brain size for a major insect group, bees (superfamily Apoidea). Using a brain dataset of 93 species from North America and Europe, we found that body size was the single best predictor of brain size in bees. However, the analyses also revealed that substantial variation in brain size remained even when adjusting for body size. We consequently asked whether such variation in relative brain size might be explained by adaptive hypotheses. We found that ecologically specialized species with single generations have larger brains—relative to their body size—than generalist or multi-generation species, but we did not find an effect of sociality on relative brain size. Phylogenetic reconstruction further supported the existence of different adaptive optima for relative brain size in lineages differing in feeding specialization and reproductive strategy. Our findings shed new light on the evolution of the insect brain, highlighting the importance of ecological pressures over social factors and suggesting that these pressures are different from those previously found to influence brain evolution in other taxa. 
    more » « less