skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Insights into the Mechanical Characterization of Mouse Brain Tissue Using Microindentation Testing
Abstract Indentation testing is the most common approach to quantify mechanical brain tissue properties. Despite a myriad of studies conducted already, reported stiffness values vary extensively and continue to be subject of study. Moreover, the growing interest in the relationship between the brain's spatially heterogeneous microstructure and local tissue stiffness warrants the development of standardized measurement protocols to enable comparability between studies and assess repeatability of reported data. Here, we present three individual protocols that outline (1) sample preparation of a 1000‐µm thick coronal slice, (2) a comprehensive list of experimental parameters associated with the FemtoTools FT‐MTA03 Micromechanical Testing System for spherical indentation, and (3) two different approaches to derive the elastic modulus from raw force‐displacement data. Lastly, we demonstrate that our protocols deliver a robust experimental framework that enables us to determine the spatially heterogeneous microstructural properties of (mouse) brain tissue. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Mouse brain sample preparation Basic Protocol 2: Indentation testing of mouse brain tissue using the FemtoTools FT‐MTA03 Micromechanical Testing and Assembly System Basic Protocol 3: Tissue stiffness identification from force‐displacement data  more » « less
Award ID(s):
2227232
PAR ID:
10518373
Author(s) / Creator(s):
; ;
Publisher / Repository:
Current Protocols
Date Published:
Journal Name:
Current Protocols
Volume:
4
Issue:
4
ISSN:
2691-1299
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Articular cartilage is a multiphasic, anisotropic, and heterogeneous material. Although cartilage possesses excellent mechanical and biological properties, it can undergo mechanical damage, resulting in osteoarthritis. Thus, it is important to understand the microscale failure behavior of cartilage in both basic science and clinical contexts. Determining cartilage failure behavior and mechanisms provides insight for improving treatment strategies to delay osteoarthritis initiation or progression and can also enhance the value of cartilage as bioinspiration for material fabrication. To investigate microscale failure behavior, we developed a protocol to initiate fractures by applying a microindentation technique using a well‐defined tip geometry that creates localized cracks across a range of loading rates. The protocol includes extracting the tissue from the joint, preparing samples, and microfracture. Various aspects of the experiment, such as loading profile and solvent, can be adjusted to mimic physiological or pathological conditions and thereby further clarify phenomena underlying articular cartilage failure. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Harvesting and dissection of the joint surfaces Basic Protocol 2: Preparation of samples for microindentation and fatigue testing Basic Protocol 3: Microfracture using microindentation Basic Protocol 4: Crack propagation under cyclic loading 
    more » « less
  2. Abstract Studying and quantifying the mechanics of blood clots is essential to better diagnosis and prognosis of, as well as therapy for, thromboembolic pathologies such as strokes, heart attacks, and pulmonary embolisms. Unfortunately, mechanically testing blood clots is complicated by their softness and fragility, thus making the use of classic mounting techniques, such as clamping, challenging. This is particularly true for mechanical testing under large deformation. Here, we describe protocols for creating in vitro blood clots and securely mounting these samples on mechanical test equipment. To this end, we line 3D‐printed molds with a hook‐and‐loop fabric that, after coagulation, provides a secure interface between the sample and device mount. In summary, our molding and mounting protocols are ideal for performing large‐deformation mechanical testing, with samples that can withstand substantial deformation without delaminating from the apparatus. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Cube‐shaped blood clot preparation Basic Protocol 2: Sheet‐shaped blood clot preparation 
    more » « less
  3. Abstract Physical properties of the extracellular matrix (ECM) affect cell behaviors ranging from cell adhesion and migration to differentiation and gene expression, a process known as mechanotransduction. While most studies have focused on the impact of ECM stiffness, using linearly elastic materials such as polyacrylamide gels as cell culture substrates, biological tissues and ECMs are viscoelastic, which means they exhibit time‐dependent mechanical responses and dissipate mechanical energy. Recent studies have revealed ECM viscoelasticity, independent of stiffness, as a critical physical parameter regulating cellular processes. These studies have used biomaterials with tunable viscoelasticity as cell‐culture substrates, with alginate hydrogels being one of the most commonly used systems. Here, we detail the protocols for three approaches to modulating viscoelasticity in alginate hydrogels for 2D and 3D cell culture studies, as well as the testing of their mechanical properties. Viscoelasticity in alginate hydrogels can be tuned by varying the molecular weight of the alginate polymer, changing the type of crosslinker—ionic versus covalent—or by grafting short poly(ethylene‐glycol) (PEG) chains to the alginate polymer. As these approaches are based on commercially available products and simple chemistries, these protocols should be accessible for scientists in the cell biology and bioengineering communities. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Tuning viscoelasticity by varying alginate molecular weight Basic Protocol 2: Tuning viscoelasticity with ionic versus covalent crosslinking Basic Protocol 3: Tuning viscoelasticity by adding PEG spacers to alginate chains Support Protocol 1: Testing mechanical properties of alginate hydrogels Support Protocol 2: Conjugating cell‐adhesion peptide RGD to alginate 
    more » « less
  4. Abstract The dynamics of the cellular actomyosin cytoskeleton are crucial to many aspects of cellular function. Here, we describe techniques that employ active micropost array detectors (AMPADs) to measure cytoskeletal rheology and mechanical force fluctuations. The AMPADS are arrays of flexible poly(dimethylsiloxane) (PDMS) microposts with magnetic nanowires embedded in a subset of microposts to enable actuation of those posts via an externally applied magnetic field. Techniques are described to track the magnetic microposts’ motion with nanometer precision at up to 100 video frames per second to measure the local cellular rheology at well‐defined positions. Application of these high‐precision tracking techniques to the full array of microposts in contact with a cell also enables mapping of the cytoskeletal mechanical fluctuation dynamics with high spatial and temporal resolution. This article describes (1) the fabrication of magnetic micropost arrays, (2) measurement protocols for both local rheology and cytoskeletal force fluctuation mapping, and (3) special‐purpose software routines to reduce and analyze these data. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Fabrication of magnetic micropost arrays Basic Protocol 2: Data acquisition for cellular force fluctuations on non‐magnetic micropost arrays Basic Protocol 3: Data acquisition for local cellular rheology measurements with magnetic microposts Basic Protocol 4: Data reduction: determining microposts’ motion Basic Protocol 5: Data analysis: determining local rheology from magnetic microposts Basic Protocol 6: Data analysis for force fluctuation measurements Support Protocol 1: Fabrication of magnetic Ni nanowires by electrodeposition Support Protocol 2: Configuring Streampix for magnetic rheology measurements 
    more » « less
  5. Abstract Protein activity is generally functionally integrated and spatially restricted to key locations within the cell. Knocksideways experiments allow researchers to rapidly move proteins to alternate or ectopic regions of the cell and assess the resultant cellular response. Briefly, individual proteins to be tested using this approach must be modified with moieties that dimerize under treatment with rapamycin to promote the experimental spatial relocalizations. CRISPR technology enables researchers to engineer modified protein directly in cells while preserving proper protein levels because the engineered protein will be expressed from endogenous promoters. Here we provide straightforward instructions to engineer tagged, rapamycin‐relocalizable proteins in cells. The protocol is described in the context of our work with the microtubule depolymerizer MCAK/Kif2C, but it is easily adaptable to other genes and alternate tags such as degrons, optogenetic constructs, and other experimentally useful modifications. Off‐target effects are minimized by testing for the most efficient target site using a split‐GFP construct. This protocol involves no proprietary kits, only plasmids available from repositories (such as addgene.org). Validation, relocalization, and some example novel discoveries obtained working with endogenous protein levels are described. A graduate student with access to a fluorescence microscope should be able to prepare engineered cells with spatially controllable endogenous protein using this protocol. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Choosing a target site for gene modification Basic Protocol 2: Design of gRNA(s) for targeted gene modification Basic Protocol 3: Split‐GFP test for target efficiency Basic Protocol 4: Design of the recombination template and analytical primers Support Protocol 1: Design of primers for analytical PCR Basic Protocol 5: Transfection, isolation, and validation of engineered cells Support Protocol 2: Stable transfection of engineered cells with binding partners 
    more » « less