skip to main content


This content will become publicly available on April 1, 2025

Title: Insights into the Mechanical Characterization of Mouse Brain Tissue Using Microindentation Testing
Abstract

Indentation testing is the most common approach to quantify mechanical brain tissue properties. Despite a myriad of studies conducted already, reported stiffness values vary extensively and continue to be subject of study. Moreover, the growing interest in the relationship between the brain's spatially heterogeneous microstructure and local tissue stiffness warrants the development of standardized measurement protocols to enable comparability between studies and assess repeatability of reported data. Here, we present three individual protocols that outline (1) sample preparation of a 1000‐µm thick coronal slice, (2) a comprehensive list of experimental parameters associated with the FemtoTools FT‐MTA03 Micromechanical Testing System for spherical indentation, and (3) two different approaches to derive the elastic modulus from raw force‐displacement data. Lastly, we demonstrate that our protocols deliver a robust experimental framework that enables us to determine the spatially heterogeneous microstructural properties of (mouse) brain tissue. © 2024 Wiley Periodicals LLC.

Basic Protocol 1: Mouse brain sample preparation

Basic Protocol 2: Indentation testing of mouse brain tissue using the FemtoTools FT‐MTA03 Micromechanical Testing and Assembly System

Basic Protocol 3: Tissue stiffness identification from force‐displacement data

 
more » « less
Award ID(s):
2227232
PAR ID:
10518373
Author(s) / Creator(s):
; ;
Publisher / Repository:
Current Protocols
Date Published:
Journal Name:
Current Protocols
Volume:
4
Issue:
4
ISSN:
2691-1299
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Glycosaminoglycans (GAGs) are linear polysaccharides found in a variety of organisms. GAGs contribute to biochemical pathway regulation, cell signaling, and disease progression. GAG sequence information is imperative for determining structure‐function relationships. Recent advances in electron‐activation techniques paired with high‐resolution mass spectrometry allow for full sequencing of GAG structures. Electron detachment dissociation (EDD) and negative electron transfer dissociation (NETD) are two electron‐activation methods that have been utilized for GAG characterization. Both methods produce an abundance of informative glycosidic and cross‐ring fragment ions without producing a high degree of sulfate decomposition. Here, we provide detailed protocols for using EDD and NETD to sequence GAG chains. In addition to protocols directly involving performing these MS/MS methods, protocols include sample preparation, method development, internal calibration, and data analysis. © 2021 Wiley Periodicals LLC.

    This article was corrected on 27 July 2022. See the end of the full text for details.

    Basic Protocol 1: Preparation of glycosaminoglycan samples

    Basic Protocol 2: FTICR method development

    Basic Protocol 3: Internal calibration with NaTFA

    Basic Protocol 4: Electron Detachment Dissociation (EDD) of GAG samples

    Basic Protocol 5: Negative electron transfer dissociation (NETD) of GAG samples

    Basic Protocol 6: Analysis of MS/MS data

     
    more » « less
  2. Abstract

    Studying and quantifying the mechanics of blood clots is essential to better diagnosis and prognosis of, as well as therapy for, thromboembolic pathologies such as strokes, heart attacks, and pulmonary embolisms. Unfortunately, mechanically testing blood clots is complicated by their softness and fragility, thus making the use of classic mounting techniques, such as clamping, challenging. This is particularly true for mechanical testing under large deformation. Here, we describe protocols for creating in vitro blood clots and securely mounting these samples on mechanical test equipment. To this end, we line 3D‐printed molds with a hook‐and‐loop fabric that, after coagulation, provides a secure interface between the sample and device mount. In summary, our molding and mounting protocols are ideal for performing large‐deformation mechanical testing, with samples that can withstand substantial deformation without delaminating from the apparatus. © 2021 Wiley Periodicals LLC.

    Basic Protocol 1: Cube‐shaped blood clot preparation

    Basic Protocol 2: Sheet‐shaped blood clot preparation

     
    more » « less
  3. Abstract

    Articular cartilage is a multiphasic, anisotropic, and heterogeneous material. Although cartilage possesses excellent mechanical and biological properties, it can undergo mechanical damage, resulting in osteoarthritis. Thus, it is important to understand the microscale failure behavior of cartilage in both basic science and clinical contexts. Determining cartilage failure behavior and mechanisms provides insight for improving treatment strategies to delay osteoarthritis initiation or progression and can also enhance the value of cartilage as bioinspiration for material fabrication. To investigate microscale failure behavior, we developed a protocol to initiate fractures by applying a microindentation technique using a well‐defined tip geometry that creates localized cracks across a range of loading rates. The protocol includes extracting the tissue from the joint, preparing samples, and microfracture. Various aspects of the experiment, such as loading profile and solvent, can be adjusted to mimic physiological or pathological conditions and thereby further clarify phenomena underlying articular cartilage failure. © 2021 Wiley Periodicals LLC.

    Basic Protocol 1: Harvesting and dissection of the joint surfaces

    Basic Protocol 2: Preparation of samples for microindentation and fatigue testing

    Basic Protocol 3: Microfracture using microindentation

    Basic Protocol 4: Crack propagation under cyclic loading

     
    more » « less
  4. Abstract

    Cleavage under targets and release using nuclease (CUT&RUN) is a recently developed chromatin profiling technique that uses a targeted micrococcal nuclease cleavage strategy to obtain high‐resolution binding profiles of protein factors or to map histones with specific post‐translational modifications. Due to its high sensitivity, CUT&RUN allows quality binding profiles to be obtained with only a fraction of the starting material and sequencing depth typically required for other chromatin profiling techniques such as chromatin immunoprecipitation. Although CUT&RUN has been widely adopted in multiple model systems, it has rarely been utilized inCaenorhabditis elegans, a model system of great importance to genomic research. Cell dissociation techniques, which are required for this approach, can be challenging inC. elegansdue to the toughness of the worm's cuticle and the sensitivity of the cells themselves. Here, we describe a robust CUT&RUN protocol for use inC. elegansto determine the genome‐wide localization of protein factors and specific histone marks. With a simple protocol utilizing live, uncrosslinked tissue as the starting material, performing CUT&RUN in worms has the potential to produce physiologically relevant data at a higher resolution than chromatin immunoprecipitation. This protocol involves a simple dissociation step to uniformly permeabilize worms while avoiding sample loss or cell damage, resulting in high‐quality CUT&RUN profiles with as few as 100 worms and detectable signal with as few as 10 worms. This represents a significant advancement over chromatin immunoprecipitation, which typically uses thousands or hundreds of thousands of worms for a single experiment. The protocols presented here provide a detailed description of worm growth, sample preparation, CUT&RUN workflow, library preparation for high‐throughput sequencing, and a basic overview of data analysis, making CUT&RUN simple and accessible for any worm lab. © 2022 Wiley Periodicals LLC.

    Basic Protocol 1: Growth and synchronization ofC. elegans

    Basic Protocol 2: Worm dissociation, sample preparation, and optimization

    Basic Protocol 3: CUT&RUN chromatin profiling

    Alternate Protocol: Improving CUT&RUN signal using a secondary antibody

    Basic Protocol 4: CUT&RUN library preparation for Illumina high‐throughput sequencing

    Basic Protocol 5: Basic data analysis using Linux

     
    more » « less
  5. Abstract

    Physical properties of the extracellular matrix (ECM) affect cell behaviors ranging from cell adhesion and migration to differentiation and gene expression, a process known as mechanotransduction. While most studies have focused on the impact of ECM stiffness, using linearly elastic materials such as polyacrylamide gels as cell culture substrates, biological tissues and ECMs are viscoelastic, which means they exhibit time‐dependent mechanical responses and dissipate mechanical energy. Recent studies have revealed ECM viscoelasticity, independent of stiffness, as a critical physical parameter regulating cellular processes. These studies have used biomaterials with tunable viscoelasticity as cell‐culture substrates, with alginate hydrogels being one of the most commonly used systems. Here, we detail the protocols for three approaches to modulating viscoelasticity in alginate hydrogels for 2D and 3D cell culture studies, as well as the testing of their mechanical properties. Viscoelasticity in alginate hydrogels can be tuned by varying the molecular weight of the alginate polymer, changing the type of crosslinker—ionic versus covalent—or by grafting short poly(ethylene‐glycol) (PEG) chains to the alginate polymer. As these approaches are based on commercially available products and simple chemistries, these protocols should be accessible for scientists in the cell biology and bioengineering communities. © 2021 Wiley Periodicals LLC.

    Basic Protocol 1: Tuning viscoelasticity by varying alginate molecular weight

    Basic Protocol 2: Tuning viscoelasticity with ionic versus covalent crosslinking

    Basic Protocol 3: Tuning viscoelasticity by adding PEG spacers to alginate chains

    Support Protocol 1: Testing mechanical properties of alginate hydrogels

    Support Protocol 2: Conjugating cell‐adhesion peptide RGD to alginate

     
    more » « less