skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Observed Memory Bandwidth and Power Usage on FPGA Platforms with OneAPI and Vitis HLS: A Comparison with GPUs
The two largest barriers to adoption of FPGA platforms for HPC applications are the difficulty of programming FPGAs and the performance gap when compared to GPUs. To address the first barrier, new ecosystems like Intel oneAPI, and Xilinx Vitis HLS aim to improve programmability for FPGA platforms. From a performance aspect, FPGAs trade off lower compute frequencies for more customized hardware acceleration and power efficiency when compared to GPUs. The performance for memory-bound applications on recent GPU platforms like NVIDIA’s H100 and AMD’s MI210 has also improved due to the inclusion of high-bandwidth memories (HBM), and newer FPGA platforms are also starting to include HBM in addition to traditional DRAM. To understand the current state-of-the-art and performance differences between FPGAs and GPUs, we consider realized memory bandwidth for recent FPGA and GPU platforms. We utilize a custom STREAM benchmark to evaluate two Intel FPGA platforms, the Stratix 10 SX PAC and Bittware 520N-MX, two AMD/Xilinx FPGA platforms, the Alveo U250 and Alveo U280, as well as GPU platforms from NVIDIA and AMD. We also extract power measurements and estimate memory bandwidth per Watt ((GB/s)/W) on these platforms to evaluate how FPGAs compare against GPU execution. While the GPUs far exceed the FPGAs in raw performance, the HBM equipped FPGAs demonstrate a competitive performance-power balance for larger data sizes that can be easily implemented with oneAPI and Vitis HLS kernels. These findings suggest a potential sweet spot for this emerging FPGA ecosystem to serve bandwidth limited applications in an energy-efficient fashion.  more » « less
Award ID(s):
2016701
PAR ID:
10518455
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Springer Lecture Notes in Computer Science
Volume:
13999
ISBN:
978-3-031-40843-4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The continued growth in the processing power of FPGAs coupled with high bandwidth memories (HBM), makes systems like the Xilinx U280 credible platforms for linear solvers which often dominate the run time of scientific and engineering applications. In this paper, we present Callipepla, an accelerator for a preconditioned conjugate gradient linear solver (CG). FPGA acceleration of CG faces three challenges: (1) how to support an arbitrary problem and terminate acceleration processing on the fly, (2) how to coordinate long-vector data flow among processing modules, and (3) how to save off-chip memory bandwidth and maintain double (FP64) precision accuracy. To tackle the three challenges, we present (1) a stream-centric instruction set for efficient streaming processing and control, (2) vector streaming reuse (VSR) and decentralized vector flow scheduling to coordinate vector data flow among modules and further reduce off-chip memory access latency with a double memory channel design, and (3) a mixed precision scheme to save bandwidth yet still achieve effective double precision quality solutions. To the best of our knowledge, this is the first work to introduce the concept of VSR for data reusing between on-chip modules to reduce unnecessary off-chip accesses and enable modules working in parallel for FPGA accelerators. We prototype the accelerator on a Xilinx U280 HBM FPGA. Our evaluation shows that compared to the Xilinx HPC product, the XcgSolver, Callipepla achieves a speedup of 3.94×, 3.36× higher throughput, and 2.94× better energy efficiency. Compared to an NVIDIA A100 GPU which has 4× the memory bandwidth of Callipepla, we still achieve 77% of its throughput with 3.34× higher energy efficiency. The code is available at https://github.com/UCLA-VAST/Callipepla. 
    more » « less
  2. Emerging FPGA systems are providing higher external memory bandwidth to compete with GPU performance. However, because FPGAs often achieve parallelism through deep pipelines, traditional FPGA design strategies do not necessarily scale well to large amounts of replicated pipelines that can take advantage of higher bandwidth. We show that sliding-window applications, an important subset of digital signal processing, demonstrate this scalability problem. We introduce a window generator architecture that enables replication to over 330 GB/s, which is an 8.7x improvement over previous work. We evaluate the window generator on the Intel Broadwell+Arria10 system for 2D convolution and show that for traditional convolution (one filter per image), our approach outperforms a 12-core Xeon Broadwell E5 by 81x and a high-end Nvidia P6000 GPU by an order of magnitude for most input sizes, while improving energy by 15.7x. For convolutional neural nets (CNNs), we show that although the GPU and Xeon typically outperform existing FPGA systems, projected performances of the window generator running on FPGAs with sufficient bandwidth can outperform high-end GPUs for many common CNN parameters. 
    more » « less
  3. Deep Neural Networks (DNNs) have been successfully applied in many fields. Considering performance, flexibility, and energy efficiency, Field Programmable Gate Array (FPGA) based accelerator for DNNs is a promising solution. The existing frameworks however lack the possibility of reusability and friendliness to design a new network with minimum efforts. Modern high-level synthesis (HLS) tools greatly reduce the turnaround time of designing and implementing complex FPGA-based accelerators. This paper presents a framework for hardware accelerator for DNNs using high level specification. A novel architecture is introduced that maximizes data reuse and external memory bandwidth. This framework allows to generate a scalable HLS code for a given pre-trained model that can be mapped to different FPGA platforms. Various HLS compiler optimizations have been applied to the code to produce efficient implementation and high resource utilization. The framework achieves a peak performance of 23 frames per second for SqueezeNet on Xilinx Alveo u250 board. 
    more » « less
  4. With the proliferation of low-cost sensors and the Internet of Things, the rate of producing data far exceeds the compute and storage capabilities of today’s infrastructure. Much of this data takes the form of time series, and in response, there has been increasing interest in the creation of time series archives in the last decade, along with the development and deployment of novel analysis methods to process the data. The general strategy has been to apply a plurality of similarity search mechanisms to various subsets and subsequences of time series data in order to identify repeated patterns and anomalies; however, the computational demands of these approaches renders them incompatible with today’s power-constrained embedded CPUs. To address this challenge, we present FA-LAMP, an FPGA-accelerated implementation of the Learned Approximate Matrix Profile (LAMP) algorithm, which predicts the correlation between streaming data sampled in real-time and a representative time series dataset used for training. FA-LAMP lends itself as a real-time solution for time series analysis problems such as classification. We present the implementation of FA-LAMP on both edge- and cloud-based prototypes. On the edge devices, FA-LAMP integrates accelerated computation as close as possible to IoT sensors, thereby eliminating the need to transmit and store data in the cloud for posterior analysis. On the cloud-based accelerators, FA-LAMP can execute multiple LAMP models on the same board, allowing simultaneous processing of incoming data from multiple data sources across a network. LAMP employs a Convolutional Neural Network (CNN) for prediction. This work investigates the challenges and limitations of deploying CNNs on FPGAs using the Xilinx Deep Learning Processor Unit (DPU) and the Vitis AI development environment. We expose several technical limitations of the DPU, while providing a mechanism to overcome them by attaching custom IP block accelerators to the architecture. We evaluate FA-LAMP using a low-cost Xilinx Ultra96-V2 FPGA as well as a cloud-based Xilinx Alveo U280 accelerator card and measure their performance against a prototypical LAMP deployment running on a Raspberry Pi 3, an Edge TPU, a GPU, a desktop CPU, and a server-class CPU. In the edge scenario, the Ultra96-V2 FPGA improved performance and energy consumption compared to the Raspberry Pi; in the cloud scenario, the server CPU and GPU outperformed the Alveo U280 accelerator card, while the desktop CPU achieved comparable performance; however, the Alveo card offered an order of magnitude lower energy consumption compared to the other four platforms. Our implementation is publicly available at https://github.com/aminiok1/lamp-alveo. 
    more » « less
  5. null (Ed.)
    While FPGAs have been traditionally considered hard to program, recently there have been efforts aimed to allow the use of high-level programming models and libraries intended for multi-core CPUs and GPUs to program FPGAs. For example, both Intel and Xilinx are now providing toolchains to deploy OpenCL code onto FPGA. However, because the nature of the parallelism offered by GPU and FPGA devices is fundamentally different, OpenCL code optimized for GPU can prove very inefficient on FPGA, in terms of both performance and hardware resource utilization. This paper explores this problem on finite automata traversal. In particular, we consider an OpenCL NFA traversal kernel optimized for GPU but exhibiting FPGA-friendly characteristics, namely: limited memory requirements, lack of synchronization, and SIMD execution. We explore a set of structural code changes, custom and best-practice optimizations to retarget this code to FPGA. We showcase the effect of these optimizations on an Intel Stratix V FPGA board using various NFA topologies from different application domains. Our evaluation shows that, while the resource requirements of the original code exceed the capacity of the FPGA in use, our optimizations lead to significant resource savings and allow the transformed code to fit the FPGA for all considered NFA topologies. In addition, our optimizations lead to speedups up to 4x over an already optimized code-variant aimed to fit the NFA traversal kernel on FPGA. Some of the proposed optimizations can be generalized for other applications and introduced in OpenCL-to-FPGA compiler. 
    more » « less