skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Student Interpretations of Eigenequations in Linear Algebra and Quantum Mechanics
Abstract This work investigates how students interpret various eigenequations in different contexts for$$2 \times 2$$ 2 × 2 matrices:$$A\vec {x}=\lambda \vec {x}$$ A x = λ x in mathematics and either$$\hat{S}_x| + \rangle _x=\frac{\hbar }{2}| + \rangle _x$$ S ^ x | + x = ħ 2 | + x or$$\hat{S}_z| + \rangle =\frac{\hbar }{2}| + \rangle$$ S ^ z | + = ħ 2 | + in quantum mechanics. Data were collected from two sources in a senior-level quantum mechanics course; one is video, transcript and written work of individual, semi-structured interviews; the second is written work from the same course three years later. We found two principal ways in which students reasoned about the equal sign within the mathematics eigenequation and at times within the quantum mechanical eigenequations: with a functional interpretation and/or a relational interpretation. Second, we found three distinct ways in which students explained how they made sense of the physical meaning conveyed by the quantum mechanical eigenequations: via a measurement interpretation, potential measurement interpretation, or correspondence interpretation of the equation. Finally, we present two themes that emerged in the ways that students compared the different eigenequations: attention to form and attention to conceptual (in)compatibility. These findings are discussed in relation to relevant literature, and their instructional implications are also explored.  more » « less
Award ID(s):
1912087
PAR ID:
10518608
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
International Journal of Research in Undergraduate Mathematics Education
Volume:
11
Issue:
2
ISSN:
2198-9745
Format(s):
Medium: X Size: p. 314-342
Size(s):
p. 314-342
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We prove that there are$$\gg \frac{X^{\frac{1}{3}}}{(\log X)^2}$$ X 1 3 ( log X ) 2 imaginary quadratic fieldskwith discriminant$$|d_k|\le X$$ | d k | X and an ideal class group of 5-rank at least 2. This improves a result of Byeon, who proved the lower bound$$\gg X^{\frac{1}{4}}$$ X 1 4 in the same setting. We use a method of Howe, Leprévost, and Poonen to construct a genus 2 curveCover$$\mathbb {Q}$$ Q such thatChas a rational Weierstrass point and the Jacobian ofChas a rational torsion subgroup of 5-rank 2. We deduce the main result from the existence of the curveCand a quantitative result of Kulkarni and the second author. 
    more » « less
  2. Abstract The minimum linear ordering problem (MLOP) generalizes well-known combinatorial optimization problems such as minimum linear arrangement and minimum sum set cover. MLOP seeks to minimize an aggregated cost$$f(\cdot )$$ f ( · ) due to an ordering$$\sigma $$ σ of the items (say [n]), i.e.,$$\min _{\sigma } \sum _{i\in [n]} f(E_{i,\sigma })$$ min σ i [ n ] f ( E i , σ ) , where$$E_{i,\sigma }$$ E i , σ is the set of items mapped by$$\sigma $$ σ to indices [i]. Despite an extensive literature on MLOP variants and approximations for these, it was unclear whether the graphic matroid MLOP was NP-hard. We settle this question through non-trivial reductions from mininimum latency vertex cover and minimum sum vertex cover problems. We further propose a new combinatorial algorithm for approximating monotone submodular MLOP, using the theory of principal partitions. This is in contrast to the rounding algorithm by Iwata et al. (in: APPROX, 2012), using Lovász extension of submodular functions. We show a$$(2-\frac{1+\ell _{f}}{1+|E|})$$ ( 2 - 1 + f 1 + | E | ) -approximation for monotone submodular MLOP where$$\ell _{f}=\frac{f(E)}{\max _{x\in E}f(\{x\})}$$ f = f ( E ) max x E f ( { x } ) satisfies$$1 \le \ell _f \le |E|$$ 1 f | E | . Our theory provides new approximation bounds for special cases of the problem, in particular a$$(2-\frac{1+r(E)}{1+|E|})$$ ( 2 - 1 + r ( E ) 1 + | E | ) -approximation for the matroid MLOP, where$$f = r$$ f = r is the rank function of a matroid. We further show that minimum latency vertex cover is$$\frac{4}{3}$$ 4 3 -approximable, by which we also lower bound the integrality gap of its natural LP relaxation, which might be of independent interest. 
    more » « less
  3. Abstract We consider the following stochastic heat equation$$\begin{aligned} \partial _t u(t,x) = \tfrac{1}{2} \partial ^2_x u(t,x) + b(u(t,x)) + \sigma (u(t,x)) {\dot{W}}(t,x), \end{aligned}$$ t u ( t , x ) = 1 2 x 2 u ( t , x ) + b ( u ( t , x ) ) + σ ( u ( t , x ) ) W ˙ ( t , x ) , defined for$$(t,x)\in (0,\infty )\times {\mathbb {R}}$$ ( t , x ) ( 0 , ) × R , where$${\dot{W}}$$ W ˙ denotes space-time white noise. The function$$\sigma $$ σ is assumed to be positive, bounded, globally Lipschitz, and bounded uniformly away from the origin, and the functionbis assumed to be positive, locally Lipschitz and nondecreasing. We prove that the Osgood condition$$\begin{aligned} \int _1^\infty \frac{\textrm{d}y}{b(y)}<\infty \end{aligned}$$ 1 d y b ( y ) < implies that the solution almost surely blows up everywhere and instantaneously, In other words, the Osgood condition ensures that$$\textrm{P}\{ u(t,x)=\infty \quad \hbox { for all } t>0 \hbox { and } x\in {\mathbb {R}}\}=1.$$ P { u ( t , x ) = for all t > 0 and x R } = 1 . The main ingredients of the proof involve a hitting-time bound for a class of differential inequalities (Remark 3.3), and the study of the spatial growth of stochastic convolutions using techniques from the Malliavin calculus and the Poincaré inequalities that were developed in Chen et al. (Electron J Probab 26:1–37, 2021, J Funct Anal 282(2):109290, 2022). 
    more » « less
  4. Abstract In this paper we prove a higher dimensional analogue of Carleson’s$$\varepsilon ^{2}$$ ε 2 conjecture. Given two arbitrary disjoint Borel sets$$\Omega ^{+},\Omega ^{-}\subset \mathbb{R}^{n+1}$$ Ω + , Ω R n + 1 , and$$x\in \mathbb{R}^{n+1}$$ x R n + 1 ,$$r>0$$ r > 0 , we denote$$ \varepsilon _{n}(x,r) := \frac{1}{r^{n}}\, \inf _{H^{+}} \mathcal{H}^{n} \left ( ((\partial B(x,r)\cap H^{+}) \setminus \Omega ^{+}) \cup (( \partial B(x,r)\cap H^{-}) \setminus \Omega ^{-})\right ), $$ ε n ( x , r ) : = 1 r n inf H + H n ( ( ( B ( x , r ) H + ) Ω + ) ( ( B ( x , r ) H ) Ω ) ) , where the infimum is taken over all open affine half-spaces$$H^{+}$$ H + such that$$x \in \partial H^{+}$$ x H + and we define$$H^{-}= \mathbb{R}^{n+1} \setminus \overline{H^{+}}$$ H = R n + 1 H + . Our first main result asserts that the set of points$$x\in \mathbb{R}^{n+1}$$ x R n + 1 where$$ \int _{0}^{1} \varepsilon _{n}(x,r)^{2} \, \frac{dr}{r}< \infty $$ 0 1 ε n ( x , r ) 2 d r r < is$$n$$ n -rectifiable. For our second main result we assume that$$\Omega ^{+}$$ Ω + ,$$\Omega ^{-}$$ Ω are open and that$$\Omega ^{+}\cup \Omega ^{-}$$ Ω + Ω satisfies the capacity density condition. For each$$x \in \partial \Omega ^{+} \cup \partial \Omega ^{-}$$ x Ω + Ω and$$r>0$$ r > 0 , we denote by$$\alpha ^{\pm }(x,r)$$ α ± ( x , r ) the characteristic constant of the (spherical) open sets$$\Omega ^{\pm }\cap \partial B(x,r)$$ Ω ± B ( x , r ) . We show that, up to a set of$$\mathcal{H}^{n}$$ H n measure zero,$$x$$ x is a tangent point for both$$\partial \Omega ^{+}$$ Ω + and$$\partial \Omega ^{-}$$ Ω if and only if$$ \int _{0}^{1} \min (1,\alpha ^{+}(x,r) + \alpha ^{-}(x,r) -2) \frac{dr}{r} < \infty . $$ 0 1 min ( 1 , α + ( x , r ) + α ( x , r ) 2 ) d r r < . The first result is new even in the plane and the second one improves and extends to higher dimensions the$$\varepsilon ^{2}$$ ε 2 conjecture of Carleson. 
    more » « less
  5. A<sc>bstract</sc> In a quantum theory of gravity, the species scale Λscan be defined as the scale at which corrections to the Einstein action become important or alternatively as codifying the “number of light degrees of freedom”, due to the fact that$$ {\Lambda}_s^{-1} $$ Λ s 1 is the smallest size black hole described by the EFT involving only the Einstein term. In this paper, we check the validity of this picture in diverse dimensions and with different amounts of supersymmetry and verify the expected behavior of the species scale at the boundary of moduli space. This also leads to the evaluation of the species scale in the interior of the moduli space as well as to the computation of the diameter of the moduli space. We also find evidence that the species scale satisfies the bound$$ {\frac{\left|\nabla {\Lambda}_s\right|}{\Lambda_s}}^2\le \frac{1}{d-2} $$ Λ s Λ s 2 1 d 2 all over moduli space including the interior. 
    more » « less