A<sc>bstract</sc> Using data samples of 983.0 fb−1and 427.9 fb−1accumulated with the Belle and Belle II detectors operating at the KEKB and SuperKEKB asymmetric-energye+e−colliders, singly Cabibbo-suppressed decays$$ {\Xi}_c^{+}\to p{K}_S^0 $$ ,$$ {\Xi}_c^{+}\to \Lambda {\pi}^{+} $$ , and$$ {\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+} $$ are observed for the first time. The ratios of branching fractions of$$ {\Xi}_c^{+}\to p{K}_S^0 $$ ,$$ {\Xi}_c^{+}\to \Lambda {\pi}^{+} $$ , and$$ {\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+} $$ relative to that of$$ {\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+} $$ are measured to be$$ {\displaystyle \begin{array}{c}\frac{\mathcal{B}\left({\Xi}_c^{+}\to p{K}_S^0\right)}{\mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)}=\left(2.47\pm 0.16\pm 0.07\right)\%,\\ {}\frac{\mathcal{B}\left({\Xi}_c^{+}\to \Lambda {\pi}^{+}\right)}{\mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)}=\left(1.56\pm 0.14\pm 0.09\right)\%,\\ {}\frac{\mathcal{B}\left({\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+}\right)}{\mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)}=\left(4.13\pm 0.26\pm 0.22\right)\%.\end{array}} $$ Multiplying these values by the branching fraction of the normalization channel,$$ \mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)=\left(2.9\pm 1.3\right)\% $$ , the absolute branching fractions are determined to be$$ {\displaystyle \begin{array}{c}\mathcal{B}\left({\Xi}_c^{+}\to p{K}_S^0\right)=\left(7.16\pm 0.46\pm 0.20\pm 3.21\right)\times {10}^{-4},\\ {}\mathcal{B}\left({\Xi}_c^{+}\to \Lambda {\pi}^{+}\right)=\left(4.52\pm 0.41\pm 0.26\pm 2.03\right)\times {10}^{-4},\\ {}\mathcal{B}\left({\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+}\right)=\left(1.20\pm 0.08\pm 0.07\pm 0.54\right)\times {10}^{-3}.\end{array}} $$ The first and second uncertainties above are statistical and systematic, respectively, while the third ones arise from the uncertainty in$$ \mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right) $$ .
more »
« less
Species scale in diverse dimensions
A<sc>bstract</sc> In a quantum theory of gravity, the species scale Λscan be defined as the scale at which corrections to the Einstein action become important or alternatively as codifying the “number of light degrees of freedom”, due to the fact that$$ {\Lambda}_s^{-1} $$ is the smallest size black hole described by the EFT involving only the Einstein term. In this paper, we check the validity of this picture in diverse dimensions and with different amounts of supersymmetry and verify the expected behavior of the species scale at the boundary of moduli space. This also leads to the evaluation of the species scale in the interior of the moduli space as well as to the computation of the diameter of the moduli space. We also find evidence that the species scale satisfies the bound$$ {\frac{\left|\nabla {\Lambda}_s\right|}{\Lambda_s}}^2\le \frac{1}{d-2} $$ all over moduli space including the interior.
more »
« less
- Award ID(s):
- 2013858
- PAR ID:
- 10541069
- Publisher / Repository:
- Springer Link
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2024
- Issue:
- 5
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> A time-dependent, flavour-tagged measurement ofCPviolation is performed withB0→ D+D−and$$ {B}_s^0 $$ →$$ {D}_s^{+}{D}_s^{-} $$ decays, using data collected by the LHCb detector in proton-proton collisions at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 6 fb−1. InB0→ D+D−decays theCP-violation parameters are measured to be$$ {\displaystyle \begin{array}{c}{S}_{D^{+}{D}^{-}}=-0.552\pm 0.100\left(\textrm{stat}\right)\pm 0.010\left(\textrm{syst}\right),\\ {}{C}_{D^{+}{D}^{-}}=0.128\pm 0.103\left(\textrm{stat}\right)\pm 0.010\left(\textrm{syst}\right).\end{array}} $$ In$$ {B}_s^0 $$ →$$ {D}_s^{+}{D}_s^{-} $$ decays theCP-violating parameter formulation in terms ofϕsand|λ|results in$$ {\displaystyle \begin{array}{c}{\phi}_s=-0.086\pm 0.106\left(\textrm{stat}\right)\pm 0.028\left(\textrm{syst}\right)\textrm{rad},\\ {}\mid {\lambda}_{D_s^{+}{D}_s^{-}}\mid =1.145\pm 0.126\left(\textrm{stat}\right)\pm 0.031\left(\textrm{syst}\right).\end{array}} $$ These results represent the most precise single measurement of theCP-violation parameters in their respective channels. For the first time in a single measurement,CPsymmetry is observed to be violated inB0→ D+D−decays with a significance exceeding six standard deviations.more » « less
-
A<sc>bstract</sc> A search for the decay$$ {B}_c^{+} $$ → χc1(3872)π+is reported using proton-proton collision data collected with the LHCb detector between 2011 and 2018 at centre-of-mass energies of 7, 8, and 13 TeV, corresponding to an integrated luminosity of 9 fb−1. No significant signal is observed. Using the decay$$ {B}_c^{+} $$ →ψ(2S)π+as a normalisation channel, an upper limit for the ratio of branching fractions$$ {\mathcal{R}}_{\psi (2S)}^{\chi_{c1}(3872)}=\frac{{\mathcal{B}}_{B_c^{+}\to {\chi}_{c1}(3872){\pi}^{+}}}{{\mathcal{B}}_{B_c^{+}\to \psi (2S){\pi}^{+}}}\times \frac{{\mathcal{B}}_{\chi_{c1}(3872)\to J/\psi {\pi}^{+}{\pi}^{-}}}{{\mathcal{B}}_{\psi (2S)\to J/\psi {\pi}^{+}{\pi}^{-}}}<0.05(0.06), $$ is set at the 90 (95)% confidence level.more » « less
-
A<sc>bstract</sc> In the context of quantum gravitational systems, we place bounds on regions in field space with slowly varying positive potentials. Using the fact that$$ V<{\Lambda}_s^2 $$ , where Λs(ϕ) is the species scale, and the emergent string conjecture, we show this places a bound on the maximum diameter of such regions in field space: ∆ϕ≤alog(1/V) +bin Planck units, wherea≤$$ \sqrt{\left(d-1\right)\left(d-2\right)} $$ , andbis an 𝒪(1) number and expected to be negative. The coefficient of the logarithmic term has previously been derived using TCC, providing further confirmation. For type II string flux compactifications on Calabi-Yau threefolds, using the recent results on the moduli dependence of the species scale, we can check the above relation and determine the constantb, which we verify is 𝒪(1) and negative in all the examples we studied.more » « less
-
A<sc>bstract</sc> We develop Standard Model Effective Field Theory (SMEFT) predictions ofσ($$ \mathcal{GG} $$ →h), Γ(h→$$ \mathcal{GG} $$ ), Γ(h→$$ \mathcal{AA} $$ ) to incorporate full two loop Standard Model results at the amplitude level, in conjunction with dimension eight SMEFT corrections. We simultaneously report consistent Γ(h→$$ \overline{\Psi}\Psi $$ ) results including leading QCD corrections and dimension eight SMEFT corrections. This extends the predictions of the former processes Γ, σto a full set of corrections at$$ \mathcal{O}\left({\overline{v}}_T^2/{\varLambda}^2{\left(16{\pi}^2\right)}^2\right) $$ and$$ \mathcal{O}\left({\overline{v}}_T^4/{\Lambda}^4\right) $$ , where$$ {\overline{v}}_T $$ is the electroweak scale vacuum expectation value and Λ is the cut off scale of the SMEFT. Throughout, cross consistency between the operator and loop expansions is maintained by the use of the geometric SMEFT formalism. For Γ(h→$$ \overline{\Psi}\Psi $$ ), we include results at$$ \mathcal{O}\left({\overline{v}}_T^2/{\Lambda}^2\left(16{\pi}^2\right)\right) $$ in the limit where subleadingmΨ→ 0 corrections are neglected. We clarify how gauge invariant SMEFT renormalization counterterms combine with the Standard Model counter terms in higher order SMEFT calculations when the Background Field Method is used. We also update the prediction of the total Higgs width in the SMEFT to consistently include some of these higher order perturbative effects.more » « less
An official website of the United States government

