Abstract A novel methodology is developed to extract accurate skeletal reaction models for nuclear combustion. Local sensitivities of isotope mass fractions with respect to reaction rates are modeled based on the forced optimally time-dependent (f-OTD) scheme. These sensitivities are then analyzed temporally to generate skeletal models. The methodology is demonstrated by conducting skeletal reduction of constant density and temperature burning of carbon and oxygen relevant to Type Ia supernovae (SNe Ia). The 495-isotopes Torch model is chosen as the detailed reaction network. A map of maximum production of56Ni in SNe Ia is produced for different temperatures, densities, and proton-to-neutron ratios. The f-OTD simulations and the sensitivity analyses are then performed with initial conditions from this map. A series of skeletal models are derived and their performances are assessed by comparison against currently existing skeletal models. Previous models have been constructed intuitively by assuming the dominance ofα-chain reactions. The comparison of the newly generated skeletal models against previous models is based on the predicted energy release and44Ti and56Ni abundances by each model. The consequences ofye≠ 0.5 in the initial composition are also explored whereyeis the electron fraction. The simulated results show that56Ni production decreases by decreasingyeas expected, and that the43Sc is a key isotope in proton and neutron channels toward56Ni production. It is shown that an f-OTD skeletal model with 150 isotopes can accurately predict the56Ni abundance in SNe Ia forye≲ 0.5 initial conditions.
more »
« less
Vibrational synchronization and its reaction pathway influence from an entropic intermediate in a dirhodium catalyzed allylic C–H activation/Cope rearrangement reaction
In the dynamically stepwise reaction pathway C–H insertionversusCope selectivity is highly influenced by whether or not vibrational synchronization occurs in the nonstatistical entropic intermediate.
more »
« less
- Award ID(s):
- 2244799
- PAR ID:
- 10518714
- Publisher / Repository:
- RSC
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 26
- Issue:
- 15
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 11386 to 11394
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Low temperature plasmas (LTP) are a unique class of open‐driven systems in which chemical reactions are unpredictable using established concepts. The terminal state of chemical reactions in LTP, termed thesuperlocalequilibrium state, is hypothesized to be defined by a proposed set of state variables. Using a LTP reactor wherein the state variables have been measured, it is shown that CO2spontaneously splits and the effluent speciation is independent of the influent speciation if the state variables are held constant and the residence time is long. CO2conversion at long residence times, which is expected to be nominally zero from equilibrium thermodynamics, can be as high as 70% in the LTP. The employed low pressure plasma reactor (P= 10 mbar) had a similar volume, productivity, and energy efficiency compared to an atmospheric pressure dielectric barrier discharge reactor, thanks to reaction rates that were three orders of magnitude faster.more » « less
-
Abstract Controlling the self‐assembly behaviors of block copolymers (BCPs) is a focal point of many research thrusts due to their broad use in various applications. While BCP molecular weight, volume fraction, and chemical identities are key thermodynamic parameters to determine their morphology, an emergent method in this area is through reaction‐induced changes to the characteristics of a BCPin situ, which provides access to multiple morphologies and domain sizes from a single parent polymer, as well as enabling the formation of metastable morphologies which may be difficult to attain otherwise. This work provides a focused review about the current state of reaction‐induced morphology control in BCPs in both solution and solid states. Furthermore, we provide a forward‐looking perspective on the future opportunities of understanding and employing reaction engineering to manipulate and advance BCP self‐assembly. © 2023 Society of Industrial Chemistry.more » « less
-
Abstract AutoMeKin2021 is an updated version of tsscds2018, a program for the automated discovery of reaction mechanisms (J. Comput. Chem.2018,39, 1922). This release features a number of new capabilities: rare‐event molecular dynamics simulations to enhance reaction discovery, extension of the original search algorithm to study van der Waals complexes, use of chemical knowledge, a new search algorithm based on bond‐order time series analysis, statistics of the chemical reaction networks, a web application to submit jobs, and other features. The source code, manual, installation instructions and the website link are available at:https://rxnkin.usc.es/index.php/AutoMeKinmore » « less
An official website of the United States government

