skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Skeletal Kinetics Reduction for Astrophysical Reaction Networks
Abstract A novel methodology is developed to extract accurate skeletal reaction models for nuclear combustion. Local sensitivities of isotope mass fractions with respect to reaction rates are modeled based on the forced optimally time-dependent (f-OTD) scheme. These sensitivities are then analyzed temporally to generate skeletal models. The methodology is demonstrated by conducting skeletal reduction of constant density and temperature burning of carbon and oxygen relevant to Type Ia supernovae (SNe Ia). The 495-isotopes Torch model is chosen as the detailed reaction network. A map of maximum production of56Ni in SNe Ia is produced for different temperatures, densities, and proton-to-neutron ratios. The f-OTD simulations and the sensitivity analyses are then performed with initial conditions from this map. A series of skeletal models are derived and their performances are assessed by comparison against currently existing skeletal models. Previous models have been constructed intuitively by assuming the dominance ofα-chain reactions. The comparison of the newly generated skeletal models against previous models is based on the predicted energy release and44Ti and56Ni abundances by each model. The consequences ofye≠ 0.5 in the initial composition are also explored whereyeis the electron fraction. The simulated results show that56Ni production decreases by decreasingyeas expected, and that the43Sc is a key isotope in proton and neutron channels toward56Ni production. It is shown that an f-OTD skeletal model with 150 isotopes can accurately predict the56Ni abundance in SNe Ia forye≲ 0.5 initial conditions.  more » « less
Award ID(s):
2042918
PAR ID:
10545914
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
AAS
Date Published:
Journal Name:
The Astrophysical Journal Supplement Series
Volume:
272
Issue:
2
ISSN:
0067-0049
Page Range / eLocation ID:
34
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present optical photometric and spectroscopic observations of the peculiar Type Ia supernovae (SNe Ia) ASASSN-20jq/SN 2020qxp. It is a low-luminosity object, with a peak absolute magnitude ofMB = −17.1 ± 0.5 mag, while its post-peak light-curve decline rate of Δm15(B) = 1.35 ± 0.09 mag and color-stretch parameter ofsBV ⪆ 0.82 is similar to that of normal luminosity SNe Ia. That makes it a prevalent outlier in both the SN Ia luminosity-width and the luminosity-color-stretch relations. The analysis of the early light curves indicates a possible “bump” during the first ≈1.4 days of explosion. ASASSN-20jq synthesized a low radioactive56Ni mass of 0.09 ± 0.01 M. The near-maximum light spectra of the supernova show strong Si IIabsorption lines, indicating a cooler photosphere than normal SNe Ia; however, it lacks Ti IIabsorption lines. Additionally, it shows unusually strong absorption features of O Iλ7773 and the Ca IInear-infrared triplet. The nebular spectra of ASASSN-20jq show a remarkably strong but narrow forbidden [Ca II]λλ7291, 7324 doublet emission that has not been seen in SNe Ia except for a handful of Type Iax events. There is also a marginal detection of the [O I]λλ6300, 6364 doublet emission in nebular spectra, which is extremely rare. Both the [Ca II] and [O I] lines are redshifted by roughly 2000 km s−1. ASASSN-20jq also exhibits a strong [Fe II]λ7155 emission line with a tilted-top line profile, which is identical to the [Fe II]λ16433 line profile. The asymmetric [Fe II] line profiles, along with the redshifted [Ca II] and emission lines, suggest a high central density white dwarf progenitor that underwent an off-center delayed-detonation explosion mechanism, synthesizing roughly equal amounts of56Ni during the deflagration and detonation burning phases. The equal production of56Ni in both burning phases distinguishes ASASSN-20jq from normal bright and subluminous SNe Ia. Assuming this scenario, we simultaneously modeled the optical and near-infrared nebular spectra, achieving a good agreement with the observations. The light curve and spectroscopic features of ASASSN-20jq do not align with any single sub-class of SNe Ia. However, the significant deviation from the luminosity versus light-curve shape relations (along with several light-curve and spectroscopic features) exhibits similarities to some 2002es-like objects. Therefore, we have identified ASASSN-20jq as an extreme candidate within the broad and heterogeneous parameter space of 2002es-like SNe Ia. 
    more » « less
  2. Context. At present, there are strong indications that white dwarf (WD) stars with masses well below the Chandrasekhar limit ( M Ch ≈ 1.4 M ⊙ ) contribute a significant fraction of SN Ia progenitors. The relative fraction of stable iron-group elements synthesized in the explosion has been suggested as a possible discriminant between M Ch and sub- M Ch events. In particular, it is thought that the higher-density ejecta of M Ch WDs, which favours the synthesis of stable isotopes of nickel, results in prominent [Ni  II ] lines in late-time spectra (≳150 d past explosion). Aims. We study the explosive nucleosynthesis of stable nickel in SNe Ia resulting from M Ch and sub- M Ch progenitors. We explore the potential for lines of [Ni  II ] in the optical an near-infrared (at 7378 Å and 1.94 μm) in late-time spectra to serve as a diagnostic of the exploding WD mass. Methods. We reviewed stable Ni yields across a large variety of published SN Ia models. Using 1D M Ch delayed-detonation and sub- M Ch detonation models, we studied the synthesis of stable Ni isotopes (in particular, 58 Ni) and investigated the formation of [Ni  II ] lines using non-local thermodynamic equilibrium radiative-transfer simulations with the CMFGEN code. Results. We confirm that stable Ni production is generally more efficient in M Ch explosions at solar metallicity (typically 0.02–0.08 M ⊙ for the 58 Ni isotope), but we note that the 58 Ni yield in sub- M Ch events systematically exceeds 0.01 M ⊙ for WDs that are more massive than one solar mass. We find that the radiative proton-capture reaction 57 Co( p ,  γ ) 58 Ni is the dominant production mode for 58 Ni in both M Ch and sub- M Ch models, while the α -capture reaction on 54 Fe has a negligible impact on the final 58 Ni yield. More importantly, we demonstrate that the lack of [Ni  II ] lines in late-time spectra of sub- M Ch events is not always due to an under-abundance of stable Ni; rather, it results from the higher ionization of Ni in the inner ejecta. Conversely, the strong [Ni  II ] lines predicted in our 1D M Ch models are completely suppressed when 56 Ni is sufficiently mixed with the innermost layers, which are rich in stable iron-group elements. Conclusions. [Ni  II ] lines in late-time SN Ia spectra have a complex dependency on the abundance of stable Ni, which limits their use in distinguishing among M Ch and sub- M Ch progenitors. However, we argue that a low-luminosity SN Ia displaying strong [Ni  II ] lines would most likely result from a Chandrasekhar-mass progenitor. 
    more » « less
  3. Abstract Following our previous study of Artificial Intelligence Assisted Inversion (AIAI) of supernova analyses, we train a set of deep neural networks based on the 1D radiative transfer code TARDIS to simulate the optical spectra of Type Ia supernovae (SNe Ia) between 10 and 40 days after the explosion. The neural networks are applied to derive the mass of56Ni in velocity ranges above the photosphere for a sample of 124 well-observed SNe Ia in the TARDIS model context. A subset of the SNe have multi-epoch observations for which the decay of the radioactive56Ni can be used to test the AIAI quantitatively. The56Ni mass derived from AIAI using the observed spectra as inputs for this subset agrees with the radioactive decay rate of56Ni. AIAI reveals that a spectral signature near 3890 Å is related to the Niii4067Å line, and the56Ni mass deduced from AIAI is found to be correlated with the light-curve shapes of SNe Ia, with SNe Ia with broader light curves showing larger56Ni mass in the envelope above the photosphere. AIAI enables spectral data of SNe to be quantitatively analyzed under theoretical frameworks based on well-defined physical assumptions. 
    more » « less
  4. We present the H-band wavelength region of 37 postmaximum light near-infrared spectra of three normal, nine transitional, and four subluminous type Ia supernovae (SNe Ia), extending from +5 days to +20 days relative to the epoch of B-band maximum. We introduce a new observable, the blue-edge velocity, v edge, of the prominent Fe/Co/Ni-peak H-band emission feature, which is quantitatively measured. The v edge parameter is found to decrease over subtype ranging from around ‑14,000 km s‑1 for normal SNe Ia, to ‑10,000 km s‑1 for transitional SNe Ia, down to ‑5000 km s‑1 for the subluminous SNe Ia. Furthermore, inspection of the +10 ± 3 days spectra indicates that v edge is correlated with the color-stretch parameter, s BV , and hence with peak luminosity. These results follow the previous findings that brighter SNe Ia tend to have 56Ni located at higher velocities as compared to subluminous objects. As v edge is a model-independent parameter, we propose it can be used in combination with traditional observational diagnostics to provide a new avenue to robustly distinguish between leading SNe Ia explosion models. This Letter includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. 
    more » « less
  5. Abstract We present a JWST mid-infrared (MIR) spectrum of the underluminous Type Ia Supernova (SN Ia) 2022xkq, obtained with the medium-resolution spectrometer on the Mid-Infrared Instrument (MIRI) ∼130 days post-explosion. We identify the first MIR lines beyond 14μm in SN Ia observations. We find features unique to underluminous SNe Ia, including the following: isolated emission of stable Ni, strong blends of [Tiii], and large ratios of singly ionized to doubly ionized species in both [Ar] and [Co]. Comparisons to normal-luminosity SNe Ia spectra at similar phases show a tentative trend between the width of the [Coiii] 11.888μm feature and the SN light-curve shape. Using non-LTE-multi-dimensional radiation hydro simulations and the observed electron capture elements, we constrain the mass of the exploding WD. The best-fitting model shows that SN 2022xkq is consistent with an off-center delayed-detonation explosion of a near-Chandrasekhar mass WD ( M WD ≈1.37M) of high central density (ρc≥ 2.0 × 109g cm−3) seen equator-on, which producedM(56Ni) =0.324MandM(58Ni) ≥0.06M. The observed line widths are consistent with the overall abundance distribution; and the narrow stable Ni lines indicate little to no mixing in the central regions, favoring central ignition of subsonic carbon burning followed by an off-center deflagration-to-detonation transition beginning at a single point. Additional observations may further constrain the physics revealing the presence of additional species including Cr and Mn. Our work demonstrates the power of using the full coverage of MIRI in combination with detailed modeling to elucidate the physics of SNe Ia at a level not previously possible. 
    more » « less