Abstract Sodium all‐solid‐state batteries (NaSSBs) with an alloy‐type anode (e.g., Sn and Sb) offer superior capacity and energy density compared to hard carbon anode. However, the irreversible loss of Na+at the alloy anode during the initial cycle results in diminished capacity and stability, impairing full‐cell performance. This study presents an easy‐to‐implement cathode presodiation strategy by employing a Na‐rich material to address these challenges. Leveraging the high theoretical capacity and suitable voltage window, Na2S is chosen as the Na donor, which is activated by creating a mixed electron‐ion conducting network, delivering a high capacity of 511.7 mAh g−1. By adding a small amount (i.e., 3 wt.%) of Na2S to the cathode composite, a NaCrO2|| Sn full cell demonstrated capacity improvement from 90.8 to 118.2 mAh g−1(based on cathode mass). The capacity‐balanced full cell can thus cycle to more than 300 times with >90% capacity retention. This work provides a practical solution to enhance the full‐cell performance and advance the transformation from half‐cell to full‐cell applications of NaSSBs. 
                        more » 
                        « less   
                    
                            
                            On the Electrochemical Properties of Carbon-Coated NaCrO2 for Na-Ion Batteries
                        
                    
    
            NaCrO2 is a promising cathode for Na-ion batteries. However, further studies of the mechanisms controlling its specific capacities and cycle stability are needed for real-world applications in the future. This study reveals, for the first time, that the typical specific capacity of ~110 mAh/g reported by many researchers when the charge/discharge voltage window is set between 2.0 and 3.6 V vs. Na/Na+ is actually controlled by the low electronic conductivity at the electrode/electrolyte interface. Through wet solution mixing of NaCrO2 particles with carbon precursors, uniform carbon coating can be formed on the surface of NaCrO2 particles, leading to unprecedented specific capacities at 140 mAh/g, which is the highest specific capacity ever reported in the literature with the lower and upper cutoff voltages at the aforementioned values. However, such carbon-coated NaCrO2 with ultrahigh specific capacity does not improve cycle stability because with the specific capacity at 140 mAh/g the Na deintercalation during charge is more than 50% Na ions per formula unit of NaCrO2 which leads to irreversible redox reactions. The insights from this study provide a future direction to enhance the long-term cycle stability of NaCrO2 through integrating carbon coating and doping. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1918991
- PAR ID:
- 10518738
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Batteries
- Volume:
- 9
- Issue:
- 9
- ISSN:
- 2313-0105
- Page Range / eLocation ID:
- 433
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Silicon/graphite (Si/Gr) nanocomposites with controlled void spaces and encapsulated by a carbon shell (Si/Gr@void@C) are synthesized by utilizing high-energy ball milling to reduce micron-sized particles to nanoscale, followed by carbonization of polydopamine (PODA) to form a carbon shell, and finally partial etching of the nanostructured Si core by NaOH solution at elevated temperatures. In particular, the effects of ball milling time and NaOH etching temperature on the electrochemical properties of Si/Gr@void@C are investigated. Increasing the ball milling time results in the improved specific capacity of Si-based anodes. Carbon coating further enhances the specific capacity and capacity retention over charge/discharge cycles. The best cycle stability is achieved after partial etching of the Si core inside Si/Gr@void@C particles at either 70 or 80 C, leading to little or no capacity decay over 130 cycles. However, it is found that both carbon coating and NaOH etching processes cause some surface oxidation of the nanostructured Si particles derived from high-energy ball milling. The surface oxidation of the nanostructured Si results in decreases in specific capacity and should be minimized in future studies. The mechanistic understanding developed in this study paves the way to further improve the electrochemical performance of Si/Gr@void@C nanocomposites in future.more » « less
- 
            Applications of silicon as a high-performance anode material has been impeded by its low intrinsic conductivity and huge volume expansion (> 300%) during lithiation. To address these problems, nano-Si particles along with conductive coatings and engineered voids are often employed, but this results in high cost anodes. Here, we report a scalable synthesis method that can realize high specific capacity (~800 mAh g-1), ultrafast charge/discharge (at 8 A g-1 Si) and high initial Coulombic efficiency (~90%) with long cycle life (1000 cycles) at the same time. To achieve 1000 cycle stability, micron-sized Si particles are subjected to high-energy ball milling to create nanostructured Si building blocks with nano-channel shaped voids encapsulated inside a nitrogen (N)-doped carbon shell (termed as Si micro-reactor). The nano-channel voids inside a Si micro-reactor not only offer the space to accommodate the volume expansion of Si, but also provide fast pathways for Li ion diffusion into the center of the nanostructured Si core and thus ultrafast charge/discharge capability. The porous N-doped carbon shell helps to improve the conductivity while allowing fast Li ion transport and confining the volume expansion within the Si micro-reactor. Submicron-sized Si micro-reactors with limited specific surface area (35 m2 g-1) afford sufficient electrode/electrolyte interfacial area for fast lithiation/delithiation, leading to the specific capacity ranging from ~800 to 420 mAh g-1 under ultrafast charging conditions (8 A g-1), but not too much interfacial area for surface side reactions and thus high initial coulombic efficiency (~90%). Since Si micro-reactors with superior electrochemical properties are synthesized via an industrially scalable and eco-friendly method, they have the potential for practical applications in the future.more » « less
- 
            Silicon has the potential to be a high-performance anode material, but its practical application is impeded by huge volume expansion during lithiation. Many studies have revealed that the huge volume expansion problem can be mitigated by introducing engineered voids into Si/C core–shell structures. In this study, a Si/C core/shell structure with engineered voids, termed Si@void@C, is investigated for its specific capacity and cycle stability as a function of particle size and charge/discharge protocol. The study shows that finer Si@void@C particles result in higher specific capacities, but with little impact on the cycle stability. Further, lower and upper cutoff voltages in charge/discharge have a profound impact on the specific capacity and cycle stability. Importantly, cutoff voltages in formation cycles have long-lasting effects on the cycle stability, indicating the critical role of forming a robust solid electrolyte interphase (SEI) layer during formation cycles. Using a constant current charge followed by potentiostatic hold charge can further improve the cycle stability and minimize the sharp capacity decay in the first 20–40 cycles. With proper choices of charge/discharge protocols, the specific capacities of Si@void@C anodes at the electrode level are 66.8%, 38.2% and 22.7% higher than those of graphite anodes at the 1st, 300th and 500th cycles, respectively, proving that Si@void@C has promising potential to replace graphite anodes for practical applications in the future.more » « less
- 
            Lithium–CO2 batteries are attractive energy‐storage systems for fulfilling the demand of future large‐scale applications such as electric vehicles due to their high specific energy density. However, a major challenge with Li–CO2 batteries is to attain reversible formation and decomposition of the Li2CO3 and carbon discharge products. A fully reversible Li–CO2 battery is developed with overall carbon neutrality using MoS2 nanoflakes as a cathode catalyst combined with an ionic liquid/dimethyl sulfoxide electrolyte. This combination of materials produces a multicomponent composite (Li2CO3/C) product. The battery shows a superior long cycle life of 500 for a fixed 500 mAh g−1 capacity per cycle, far exceeding the best cycling stability reported in Li–CO2 batteries. The long cycle life demonstrates that chemical transformations, making and breaking covalent C-O bonds can be used in energy‐storage systems. Theoretical calculations are used to deduce a mechanism for the reversible discharge/charge processes and explain how the carbon interface with Li2CO3 provides the electronic conduction needed for the oxidation of Li2CO3 and carbon to generate the CO2 on charge. This achievement paves the way for the use of CO2 in advanced energy‐storage systems.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    