skip to main content


This content will become publicly available on August 12, 2025

Title: Verifiable Generation with Subsentence-Level Fine-Grained Citations
Verifiable generation requires large language models (LLMs) to cite source documents supporting their outputs, thereby improve output transparency and trustworthiness. Yet, previous work mainly targets the generation of sentencelevel citations, lacking specificity about which part of the sentence is backed by which cited source. This work studies verifiable generation with subsentence-level fine-grained citations to locate the generated content that is supported by the cited sources in a more precise way. We first present a dataset, SCIFI, comprising 10K Wikipedia paragraphs with subsentence-level citations.1 Each paragraph in SCIFI is paired with a set of candidate source documents for citation and a query that triggers the generation of the paragraph content. On SCIFI, we then evaluate the performance of state-of-the-a rt LLMs and strategies for processing long documents designed for these models. Our experiment results reveal key factors that can enhance the quality of citations, including the expansion of the source documents’ context to be accessible to the models and the implementation of specialized model tuning.  more » « less
Award ID(s):
2046016
NSF-PAR ID:
10518741
Author(s) / Creator(s):
;
Publisher / Repository:
Findings of the Annual Meeting of the Association for Computational Linguistics (Findings of ACL)
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Commonly used data citation practices rely on unverifiable retrieval methods which are susceptible to content drift, which occurs when the data associated with an identifier have been allowed to change. Based on our earlier work on reliable dataset identifiers, we propose signed citations, i.e., customary data citations extended to also include a standards-based, verifiable, unique, and fixed-length digital content signature. We show that content signatures enable independent verification of the cited content and can improve the persistence of the citation. Because content signatures are location- and storage-medium-agnostic, cited data can be copied to new locations to ensure their persistence across current and future storage media and data networks. As a result, content signatures can be leveraged to help scalably store, locate, access, and independently verify content across new and existing data infrastructures. Content signatures can also be embedded inside content to create robust, distributed knowledge graphs that can be cited using a single signed citation. We describe applications of signed citations to solve real-world data collection, identification, and citation challenges. 
    more » « less
  2. Commonly used data citation practices rely on unverifiable retrieval methods which are susceptible to “content drift”, which occurs when the data associated with an identifier have been allowed to change. Based on our earlier work on reliable dataset identifiers, we propose signed citations, i.e., customary data citations extended to also include a standards-based, verifiable, unique, and fixed-length digital content signature. We show that content signatures enable independent verification of the cited content and can improve the persistence of the citation. Because content signatures are location- and storage-medium-agnostic, cited data can be copied to new locations to ensure their persistence across current and future storage media and data networks. As a result, content signatures can be leveraged to help scalably store, locate, access, and independently verify content across new and existing data infrastructures. Content signatures can also be embedded inside content to create robust, distributed knowledge graphs that can be cited using a single signed citation. We describe real-world applications of signed citations used to cite and compile distributed data collections, cite specific versions of existing data networks, and stabilize associations between URLs and content.

     
    more » « less
  3. We present a new scientific document similarity model based on matching fine-grained aspects of texts. To train our model, we exploit a naturally-occurring source of supervision: sentences in the full-text of papers that cite multiple papers together (co-citations). Such co-citations not only reflect close paper relatedness, but also provide textual descriptions of how the co-cited papers are related. This novel form of textual supervision is used for learning to match aspects across papers. We develop multi-vector representations where vectors correspond to sentence-level aspects of documents, and present two methods for aspect matching: (1) A fast method that only matches single aspects, and (2) a method that makes sparse multiple matches with an Optimal Transport mechanism that computes an Earth Mover’s Distance between aspects. Our approach improves performance on document similarity tasks in four datasets. Further, our fast single-match method achieves competitive results, paving the way for applying fine-grained similarity to large scientific corpora. 
    more » « less
  4. how we deploy and operate Open Radio Access Networks (O-RAN) by enhancing network analytics, anomaly detection, and code generation and significantly increasing the efficiency and reliability of a plethora of O-RAN tasks. In this paper, we present ORAN-Bench-13K, the first comprehensive benchmark designed to evaluate the performance of Large Language Models (LLMs) within the context of O-RAN. Our benchmark consists of 13,952 meticulously curated multiple-choice questions generated from 116 O-RAN specification documents. We leverage a novel three-stage LLM framework, and the questions are categorized into three distinct difficulties to cover a wide spectrum of ORAN-related knowledge. We thoroughly evaluate the performance of several state-of-the-art LLMs, including Gemini, Chat-GPT, and Mistral. Additionally, we propose ORANSight, a Retrieval-Augmented Generation (RAG)-based pipeline that demonstrates superior performance on ORAN-Bench-13K compared to other tested closed-source models. Our findings indicate that current popular LLM models are not proficient in O-RAN, highlighting the need for specialized models. We observed a noticeable performance improvement when incorporating the RAG-based ORANSight pipeline, with a Macro Accuracy of 0.784 and a Weighted Accuracy of 0.776, which was on average 21.55% and 22.59% better than the other tested LLMs. 
    more » « less
  5. Generating paragraphs of diverse contents is important in many applications. Existing generation models produce similar contents from homogenized contexts due to the fixed left-to-right sentence order. Our idea is permuting the sentence orders to improve the content diversity of multi-sentence paragraph. We propose a novel framework PermGen whose objective is to maximize the expected log-likelihood of output paragraph distributions with respect to all possible sentence orders. PermGen uses hierarchical positional embedding and designs new procedures for training, and decoding in the sentence-permuted generation. Experiments on three paragraph generation benchmarks demonstrate PermGen generates more diverse outputs with a higher quality than existing models. 
    more » « less