skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Gradual Decline of Star Formation since Cluster Infall: New Kinematic Insights into Environmental Quenching at 0.3 < z < 1.1
Abstract The environments where galaxies reside crucially shape their star formation histories. We investigate a large sample of 1626 cluster galaxies located within 105 galaxy clusters spanning a large range in redshift (0.26 <z< 1.13). The galaxy clusters are massive (M500≳ 2 × 1014M) and uniformly selected from the SPT and ACT Sunyaev–Zel’dovich surveys. With spectra in hand for thousands of cluster members, we use the galaxies’ position in projected phase space as a proxy for their infall times, which provides a more robust measurement of environment than quantities such as projected clustercentric radius. We find clear evidence for a gradual age increase of the galaxy’s mean stellar populations (∼0.71 ± 0.4 Gyr based on a 4000 Å break, Dn4000) with the time spent in the cluster environment. This environmental quenching effect is found regardless of galaxy luminosity (faint or bright) and redshift (low or high-z), although the exact stellar age of galaxies depends on both parameters at fixed environmental effects. Such a systematic increase of Dn4000 with infall proxy would suggest that galaxies that were accreted into hosts earlier were quenched earlier due to longer exposure to environmental effects such as ram pressure stripping and starvation. Compared to the typical dynamical timescales of 1–3 Gyr of cluster galaxies, the relatively small age increase (∼0.71 ± 0.4 Gyr) found in our sample galaxies seems to suggest that a slow environmental process such as starvation is the dominant quenching pathway. Our results provide new insights into environmental quenching effects spanning a large range in cosmic time (∼5.2 Gyr,z= 0.26–1.13) and demonstrate the power of using a kinematically derived infall time proxy.  more » « less
Award ID(s):
1852617
PAR ID:
10518788
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
IOP
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
955
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
32
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We model satellite quenching at z ∼ 1 by combining 14 massive (1013.8 < Mhalo/M⊙ < 1015) clusters at 0.8 < z < 1.3 from the GOGREEN and GCLASS surveys with accretion histories of 56 redshift-matched analogues from the IllustrisTNG simulation. Our fiducial model, which is parametrized by the satellite quenching time-scale (τquench), accounts for quenching in our simulated satellite population both at the time of infall by using the observed coeval field quenched fraction and after infall by tuning τquench to reproduce the observed satellite quenched fraction versus stellar mass trend. This model successfully reproduces the observed satellite quenched fraction as a function of stellar mass (by construction), projected cluster-centric radius, and redshift and is consistent with the observed field and cluster stellar mass functions at z ∼ 1. We find that the satellite quenching time-scale is mass dependent, in conflict with some previous studies at low and intermediate redshift. Over the stellar mass range probed (M⋆ > 1010 M⊙), we find that the satellite quenching time-scale decreases with increasing satellite stellar mass from ∼1.6 Gyr at 1010 M⊙ to ∼0.6−1 Gyr at 1011 M⊙ and is roughly consistent with the total cold gas (HI + H2) depletion time-scales at intermediate z, suggesting that starvation may be the dominant driver of environmental quenching at z < 2. Finally, while environmental mechanisms are relatively efficient at quenching massive satellites, we find that the majority ($$\sim 65{\!-\!}80{{\ \rm per\ cent}}$$) of ultra-massive satellites (M⋆ > 1011 M⊙) are quenched prior to infall. 
    more » « less
  2. Abstract We utilize ∼17,000 bright luminous red galaxies (LRGs) from the novel Dark Energy Spectroscopic Instrument Survey Validation spectroscopic sample, leveraging its deep (∼2.5 hr galaxy−1exposure time) spectra to characterize the contribution of recently quenched galaxies to the massive galaxy population at 0.4 <z< 1.3. We useProspectorto infer nonparametric star formation histories and identify a significant population of recently quenched galaxies that have joined the quiescent population within the past ∼1 Gyr. The highest-redshift subset (277 atz> 1) of our sample of recently quenched galaxies represents the largest spectroscopic sample of post-starburst galaxies at that epoch. At 0.4 <z< 0.8, we measure the number density of quiescent LRGs, finding that recently quenched galaxies constitute a growing fraction of the massive galaxy population with increasing look-back time. Finally, we quantify the importance of this population among massive ( log ( M / M ) > 11.2) LRGs by measuring the fraction of stellar mass each galaxy formed in the gigayear before observation,f1 Gyr. Although galaxies withf1 Gyr> 0.1 are rare atz∼ 0.4 (≲0.5% of the population), byz∼ 0.8, they constitute ∼3% of massive galaxies. Relaxing this threshold, we find that galaxies withf1 Gyr> 5% constitute ∼10% of the massive galaxy population atz∼ 0.8. We also identify a small but significant sample of galaxies atz= 1.1–1.3 that formed withf1 Gyr> 50%, implying that they may be analogs to high-redshift quiescent galaxies that formed on similar timescales. Future analysis of this unprecedented sample promises to illuminate the physical mechanisms that drive the quenching of massive galaxies after cosmic noon. 
    more » « less
  3. Abstract We present results from a Keck/DEIMOS survey to study satellite quenching in group environments atz ~ 0.8 within the Extended Groth Strip (EGS). We target 11 groups in the EGS with extended X-ray emission. We obtain high-quality spectroscopic redshifts for group member candidates, extending to depths over 1 order of magnitude fainter than existing DEEP2/DEEP3 spectroscopy. This depth enables the first spectroscopic measurement of the satellite quiescent fraction down to stellar masses of ~109.5Mat this redshift. By combining an infall-based environmental quenching model, constrained by the observed quiescent fractions, with infall histories of simulated groups from the IllustrisTNG100-1-Dark simulation, we estimate environmental quenching timescales (τquench) for the observed group population. At high stellar masses (M⋆ = 1010.5M) we find that τ quench = 2.4 + 0.2 0.2 Gyr, which is consistent with previous estimates at this epoch. At lower stellar masses (M⋆ = 109.5M), we find that τ quench = 3.1 + 0.5 0.4 Gyr, which is shorter than prior estimates from photometry-based investigations. These timescales are consistent with satellite quenching via starvation, provided the hot gas envelope of infalling satellites is not stripped away. We find that the evolution in the quenching timescale between 0 <z<1 aligns with the evolution in the dynamical time of the host halo and the total cold gas depletion time. This suggests that the doubling of the quenching timescale in groups sincez ~ 1 could be related to the dynamical evolution of groups or a decrease in quenching efficiency via starvation with decreasing redshift. 
    more » « less
  4. Abstract Many quiescent galaxies discovered in the early Universe by JWST raise fundamental questions on when and how these galaxies became and stayed quenched. Making use of the latest version of the semianalytic model GAEA that provides good agreement with the observed quenched fractions up toz∼ 3, we make predictions for the expected fractions of quiescent galaxies up toz∼ 7 and analyze the main quenching mechanism. We find that in a simulated box of 685 Mpc on a side, the first quenched massive (M∼ 1011M), Milky Way–mass, and low-mass (M∼ 109.5M) galaxies appear atz∼ 4.5,z∼ 6.2, and beforez= 7, respectively. Most quenched galaxies identified at early redshifts remain quenched for more than 1 Gyr. Independently of galaxy stellar mass, the dominant quenching mechanism at high redshift is accretion disk feedback (quasar winds) from a central massive black hole, which is triggered by mergers in massive and Milky Way–mass galaxies and by disk instabilities in low-mass galaxies. Environmental stripping becomes increasingly more important at lower redshift. 
    more » « less
  5. Abstract Using stellar population synthesis models to infer star formation histories (SFHs), we analyze photometry and spectroscopy of a large sample of quiescent galaxies that are members of Sunyaev–Zel’dovich (SZ)-selected galaxy clusters across a wide range of redshifts. We calculate stellar masses and mass-weighted ages for 837 quiescent cluster members at 0.3 < z < 1.4 using rest-frame optical spectra and the Python-based Prospector framework, from 61 clusters in the SPT-GMOS Spectroscopic Survey (0.3 < z < 0.9) and three clusters in the SPT Hi-z cluster sample (1.25 < z < 1.4). We analyze spectra of subpopulations divided into bins of redshift, stellar mass, cluster mass, and velocity-radius phase-space location, as well as by creating composite spectra of quiescent member galaxies. We find that quiescent galaxies in our data set sample a diversity of SFHs, with a median formation redshift (corresponding to the lookback time from the redshift of observation to when a galaxy forms 50% of its mass, t 50 ) of z = 2.8 ± 0.5, which is similar to or marginally higher than that of massive quiescent field and cluster galaxy studies. We also report median age–stellar mass relations for the full sample (age of the universe at t 50 (Gyr) = 2.52 (±0.04)–1.66 (±0.12) log 10 ( M /10 11 M ⊙ )) and recover downsizing trends across stellar mass; we find that massive galaxies in our cluster sample form on aggregate ∼0.75 Gyr earlier than lower-mass galaxies. We also find marginally steeper age–mass relations at high redshifts, and report a bigger difference in formation redshifts across stellar mass for fixed environment, relative to formation redshifts across environment for fixed stellar mass. 
    more » « less