skip to main content


Title: HIBRIDS: Attention with Hierarchical Biases for Structure-aware Long Document Summarization
Document structure is critical for efficient information consumption. However, it is challenging to encode it efficiently into the modern Transformer architecture. In this work, we present HIBRIDS, which injects Hierarchical Biases foR Incorporating Document Structure into the calculation of attention scores. We further present a new task, hierarchical question-summary generation, for summarizing salient content in the source document into a hierarchy of questions and summaries, where each follow-up question inquires about the content of its parent question-summary pair. We also annotate a new dataset with 6, 153 question-summary hierarchies labeled on long government reports. Experiment results show that our model produces better question-summary hierarchies than comparisons on both hierarchy quality and content coverage, a finding also echoed by human judges. Additionally, our model improves the generation of long-form summaries from lengthy government reports and Wikipedia articles, as measured by ROUGE scores.  more » « less
Award ID(s):
2046016
NSF-PAR ID:
10518828
Author(s) / Creator(s):
;
Publisher / Repository:
Proceedings of Annual Meeting of the Association for Computational Linguistics (ACL)
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Long document summarization systems are critical for domains with lengthy and jargonladen text, yet they present significant challenges to researchers and developers with limited computing resources. Existing solutions mainly focus on efficient attentions or divideand- conquer strategies. The former reduces theoretical time complexity, but is still memoryheavy. The latter methods sacrifice global context, leading to uninformative and incoherent summaries. This work aims to leverage the memory-efficient nature of divide-and-conquer methods while preserving global context. Concretely, our framework AWESOME uses two novel mechanisms: (1) External memory mechanisms track previously encoded document segments and their corresponding summaries, to enhance global document understanding and summary coherence. (2) Global salient content is further identified beforehand to augment each document segment to support its summarization. Extensive experiments on diverse genres of text, including government reports, meeting transcripts, screenplays, scientific papers, and novels, show that AWESOME produces summaries with improved informativeness, faithfulness, and coherence than competitive baselines on longer documents, while having a smaller GPU memory footprint. 
    more » « less
  2. null (Ed.)
    Pyramid evaluation was developed to assess the content of paragraph length summaries of source texts. A pyramid lists the distinct units of content found in several reference summaries, weights content units by how many reference summaries they occur in, and produces three scores based on the weighted content of new summaries. We present an automated method that is more efficient, more transparent, and more complete than previous automated pyramid methods. It is tested on a new dataset of student summaries, and historical NIST data from extractive summarizers. 
    more » « less
  3. The quadratic computational and memory complexities of large Transformers have limited their scalability for long document summarization. In this paper, we propose HEPOS, a novel efficient encoder-decoder attention with head-wise positional strides to effectively pinpoint salient information from the source. We further conduct a systematic study of existing efficient self-attentions. Combined with HEPOS, we are able to process ten times more tokens than existing models that use full attentions. For evaluation, we present a new dataset, GOVREPORT, with significantly longer documents and summaries. Results show that our models produce significantly higher ROUGE scores than competitive comparisons, including new state-of-the-art results on PubMed. Human evaluation also shows that our models generate more informative summaries with fewer unfaithful errors. 
    more » « less
  4. Progress in summarizing long texts is inhibited by the lack of appropriate evaluation frameworks. A long summary that appropriately covers the facets of that text must also present a coherent narrative, but current automatic and human evaluation methods fail to identify gaps in coherence. In this work, we introduce SNaC, a narrative coherence evaluation framework for fine-grained annotations of long summaries. We develop a taxonomy of coherence errors in generated narrative summaries and collect span-level annotations for 6.6k sentences across 150 book and movie summaries. Our work provides the first characterization of coherence errors generated by state-of-the-art summarization models and a protocol for eliciting coherence judgments from crowdworkers. Furthermore, we show that the collected annotations allow us to benchmark past work in coherence modeling and train a strong classifier for automatically localizing coherence errors in generated summaries. Finally, our SNaC framework can support future work in long document summarization and coherence evaluation, including improved summarization modeling and post-hoc summary correction. 
    more » « less
  5. Hierarchical relations are prevalent and indispensable for organizing human knowledge captured by a knowledge graph (KG). The key property of hierarchical relations is that they induce a partial ordering over the entities, which needs to be modeled in order to allow for hierarchical reasoning. However, current KG embeddings can model only a single global hierarchy (single global partial ordering) and fail to model multiple heterogeneous hierarchies that exist in a single KG. Here we present ConE (Cone Embedding), a KG embedding model that is able to simultaneously model multiple hierarchical as well as non-hierarchical relations in a knowledge graph. ConE embeds entities into hyperbolic cones and models relations as transformations between the cones. In particular, ConE uses cone containment constraints in different subspaces of the hyperbolic embedding space to capture multiple heterogeneous hierarchies. Experiments on standard knowledge graph benchmarks show that ConE obtains state-of-the-art performance on hierarchical reasoning tasks as well as knowledge graph completion task on hierarchical graphs. In particular, our approach yields new state-of-the-art Hits@1 of 45.3% on WN18RR and 16.1% on DDB14 (0.231 MRR). As for hierarchical reasoning task, our approach outperforms previous best results by an average of 20% across the three datasets. 
    more » « less