skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: How Volcanic Aerosols Globally Inhibit Precipitation
Abstract Volcanic aerosols reduce global mean precipitation in the years after major eruptions, yet the mechanisms that produce this response have not been rigorously identified. Volcanic aerosols alter the atmosphere's energy balance, with precipitation changes being one pathway by which the atmosphere acts to return toward equilibrium. By examining the atmosphere's energy budget in climate model simulations using radiative kernels, we explain the global precipitation reduction as largely a consequence of Earth's surface cooling in response to volcanic aerosols reflecting incoming sunlight. These aerosols also directly add energy to the atmosphere by absorbing outgoing longwave radiation, which is a major cause of precipitation decline in the first post‐eruption year. We additionally identify factors limiting the post‐eruption precipitation decline, and provide evidence that our results are robust across climate models.  more » « less
Award ID(s):
2303352
PAR ID:
10518892
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
13
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Volcanic eruptions impact climate, subtly and profoundly. The size of an eruption is only loosely correlated with the severity of its climate effects, which can include changes in surface temperature, ozone levels, stratospheric dynamics, precipitation, and ocean circulation. We review the processes—in magma chambers, eruption columns, and the oceans, biosphere, and atmosphere—that mediate the climate response to an eruption. A complex relationship between eruption size, style, duration, and the subsequent severity of the climate response emerges. We advocate for a new, consistent metric, the Volcano-Climate Index, to categorize climate response to eruptions independent of eruption properties and spanning the full range of volcanic activity, from brief explosive eruptions to long-lasting flood basalts. A consistent metric for categorizing the climate response to eruptions that differ in size, style, and duration is critical for establishing the relationshipbetween the severity and the frequency of such responses aiding hazard assessments, and furthering understanding of volcanic impacts on climate on timescales of years to millions of years. ▪ We review the processes driving the rocky relationship between eruption size and climate response and propose a Volcano-Climate Index. ▪ Volcanic eruptions perturb Earth's climate on a range of timescales, with key open questions regarding how processes in the magmatic system, eruption column, and atmosphere shape the climate response to volcanism. ▪ A Volcano-Climate Index will provide information on the volcano-climate severity-frequency distribution, analogous to earthquake hazards. ▪ Understanding of the frequency of specific levels of volcanic climate effects will aid hazard assessments, planning, and mitigation of societal impacts. 
    more » « less
  2. Abstract The 2022 Hunga volcanic eruption injected a significant quantity of water vapor into the stratosphere while releasing only limited sulfur dioxide. It has been proposed that this excess water vapor could have contributed to global warming, potentially pushing temperatures beyond the 1.5 °C threshold of the Paris Climate Accord. However, given the cooling effects of sulfate aerosols and the contrasting impacts of ozone loss (cooling) versus gain (warming), assessing the eruption’s net radiative effect is essential. Here, we quantify the Hunga-induced perturbations in stratospheric water vapor, sulfate aerosols, and ozone using satellite observations and radiative transfer simulations. Our analysis shows that these components induce clear-sky instantaneous net radiative energy losses at both the top of the atmosphere and near the tropopause. In 2022, the Southern Hemisphere experienced a radiative forcing of −0.55 ± 0.05 W m⁻² at the top of the atmosphere and −0.52 ± 0.05 W m⁻² near the tropopause. By 2023, these values decreased to −0.26 ± 0.04 W m⁻² and −0.25 ± 0.04 W m⁻², respectively. Employing a two-layer energy balance model, we estimate that these losses resulted in cooling of about −0.10 ± 0.02 K in the Southern Hemisphere by the end of 2022 and 2023. Thus, we conclude that the Hunga eruption cooled rather than warmed the Southern Hemisphere during this period. 
    more » « less
  3. Abstract Drylands are highly vulnerable to climate change due to their fragile ecosystems and limited ability to adapt. In contrast to the global drying after tropical volcanic eruptions shown previously, we demonstrate that large tropical volcanic eruptions can induce significant two-year hydroclimatic wetting over drylands by employing the last millennium simulations. During this wetting period, which extends from the first to the third boreal winter after the eruption, several hydroclimatic indicators, such as self-calibrating Palmer Drought Severity Index based on the Penman-Monteith equation for potential evapotranspiration (scPDSIpm), standard precipitation evapotranspiration index (SPEI), aridity index (AI), top-10cm soil moisture (SM10cm), and leaf area index (LAI), show significant positive anomalies over most drylands. The primary contribution to the wetting response is the potential evapotranspiration (PET) reduction resulting from dryland surface cooling and reduced solar radiation, as well as a weak contribution from increased precipitation. The latter is due to the wind convergence into drylands caused by slower tropical cooling compared to drylands. The wetting response of drylands to volcanic eruptions also demonstrates some benefits over the global hydrological slowdown resulting from stratospheric aerosol injection, which replicates the cooling effects of volcanic eruptions to address global warming. 
    more » « less
  4. Abstract Sulfur‐rich volcanic eruptions happen sporadically. If Stratospheric Aerosol Injection (SAI) were to be deployed, it is likely that explosive volcanic eruptions would happen during such a deployment. Here we use an ensemble of Earth System Model simulations to show how changing the injection strategy post‐eruption could be used to reduce the climate risks of a large volcanic eruption; the risks are also modified even without any change to the strategy. For a medium‐size eruption (10 Tg‐SO2) comparable to the SAI injection rate, the volcanic‐induced cooling would be reduced if it occurs under SAI, especially if artificial sulfur dioxide injections were immediately suspended. Alternatively, suspending injection only in the eruption hemisphere and continuing injection in the opposite would reduce shifts in precipitation in the tropical belt and thus mitigate eruption‐induced drought. Finally, we show that for eruptions much larger than the SAI deployment, changes in SAI strategy would have minimal effect. 
    more » « less
  5. Abstract The response of precipitation extremes (PEs) to global warming is found to be nonlinear in Community Earth System Model version 1 (CESM1) and other global climate models (Pendergrass et al., 2019), which led to the concern that it is not accurate to approximate the response of PE to a single forcing as the difference between simulations with all forcing agents and those that exclude one specific forcing. This calls into question previous model‐based results that the sensitivity of PE with warming due to aerosol forcing is significantly larger than that due to greenhouse gases (GHGs). We reevaluate the PE sensitivity to GHGs and aerosols using available CESM1 ensemble simulations. We show that although the PE response to warming is nonlinear in CESM1, especially for the high warming projected in the twenty‐first‐century, PE sensitivity to aerosols is still significantly stronger than that due to GHGs when the comparison is made within similar warming regimes to avoid the bias induced by the nonlinear behavior. But the difference is smaller than previously estimated. We also conclude that the additivity assumption is largely valid to isolate the PE response due to aerosol forcing from the paired simulations including the “all forcing” experiment when the warming regime is small (e.g., 1°C–2°C in the next few decades when aerosol forcing is projected to decline and becomes a major source of uncertainty for model projection). 
    more » « less