All vehicles must follow the rules that govern traffic behavior, regardless of whether the vehicles are human-driven or Connected, Autonomous Vehicles (CAVs). Road signs indicate locally active rules, such as speed limits and requirements to yield or stop. Recent research has demonstrated attacks, such as adding stickers or dark patches to signs, that cause CAV sign misinterpretation, resulting in potential safety issues. Humans can see and potentially defend against these attacks. But humans can not detect what they can not observe. We have developed the first physical-world attack against CAV traffic sign recognition systems that is invisible to humans. Utilizing Infrared Laser Reflection (ILR), we implement an attack that affects CAV cameras, but humans can not perceive. In this work, we formulate the threat model and requirements for an ILR-based sign perception attack. Next, we evaluate attack effectiveness against popular, CNNbased traffic sign recognition systems. We demonstrate a 100% success rate against stop and speed limit signs in our laboratory evaluation. Finally, we discuss the next steps in our research.
more »
« less
This content will become publicly available on June 1, 2025
Fast and Lightweight Vision-Language Model for Adversarial Traffic Sign Detection
Several attacks have been proposed against autonomous vehicles and their subsystems that are powered by machine learning (ML). Road sign recognition models are especially heavily tested under various adversarial ML attack settings, and they have proven to be vulnerable. Despite the increasing research on adversarial ML attacks against road sign recognition models, there is little to no focus on defending against these attacks. In this paper, we propose the first defense method specifically designed for autonomous vehicles to detect adversarial ML attacks targeting road sign recognition models, which is called ViLAS (Vision-Language Model for Adversarial Traffic Sign Detection). The proposed defense method is based on a custom, fast, lightweight, and salable vision-language model (VLM) and is compatible with any existing traffic sign recognition system. Thanks to the orthogonal information coming from the class label text data through the language model, ViLAS leverages image context in addition to visual data for highly effective attack detection performance. In our extensive experiments, we show that our method consistently detects various attacks against different target models with high true positive rates while satisfying very low false positive rates. When tested against four state-of-the-art attacks targeting four popular action recognition models, our proposed detector achieves an average AUC of 0.94. This result achieves a 25.3% improvement over a state-of-the-art defense method proposed for generic image attack detection, which attains an average AUC of 0.75. We also show that our custom VLM is more suitable for an autonomous vehicle compared to the popular off-the-shelf VLM and CLIP in terms of speed (4.4 vs. 9.3 milliseconds), space complexity (0.36 vs. 1.6 GB), and performance (0.94 vs. 0.43 average AUC).
more »
« less
- Award ID(s):
- 2040572
- PAR ID:
- 10518909
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Electronics
- Volume:
- 13
- Issue:
- 11
- ISSN:
- 2079-9292
- Page Range / eLocation ID:
- 2172
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Deep learning has been widely applied in various VLSI design automation tasks, from layout quality estimation to design optimization. Though deep learning has shown state-of-the-art performance in several applications, recent studies reveal that deep neural networks exhibit intrinsic vulnerability to adversarial perturbations, which pose risks in the ML-aided VLSI design flow. One of the most effective strategies to improve robustness is regularization approaches, which adjust the optimization objective to make the deep neural network generalize better. In this paper, we examine several adversarial defense methods to improve the robustness of ML-based lithography hotspot detectors. We present an innovative design rule checking (DRC)-guided curvature regularization (CURE) approach, which is customized to robustify ML-based lithography hotspot detectors against white-box attacks. Our approach allows for improvements in both the robustness and the accuracy of the model. Experiments show that the model optimized by DRC-guided CURE achieves the highest robustness and accuracy compared with those trained using the baseline defense methods. Compared with the vanilla model, DRC-guided CURE decreases the average attack success rate by 53.9% and increases the average ROC-AUC by 12.1%. Compared with the best of the defense baselines, DRC-guided CURE reduces the average attack success rate by 18.6% and improves the average ROC-AUC by 4.3%.more » « less
-
Dong, Yinpeng; Pang, Tianyu; Yang, Xiao; Wong, Eric; Kolter, Zico; He, Yuan (Ed.)Current machine learning models suffer from evasion attacks (i.e., adversarial examples) raising concerns in security-sensitive settings such as autonomous vehicles. While many countermeasures may look promising, only a few withstand rigorous evaluation. Recently, defenses using random transformations (RT) have shown impressive results, particularly BaRT (Raff et al. 2019) on ImageNet. However, this type of defense has not been rigorously evaluated, leaving its robustness properties poorly understood. The stochasticity of these models also makes evaluation more challenging and many proposed attacks on deterministic models inapplicable. First, we show that the BPDA attack (Athalye, Carlini, and Wagner 2018) used in BaRT’s evaluation is ineffective and likely overestimates its robustness. We then attempt to construct the strongest possible RT defense through the informed selection of transformations and Bayesian optimization for tuning their parameters. Furthermore, we create the strongest possible attack to evaluate our RT defense. Our new attack vastly outperforms the baseline, reducing the accuracy by 83% compared to the 19% reduction by the commonly used EoT attack (4.3× improvement). Our result indicates that the RT defense on Imagenette dataset (ten-class subset of ImageNet) is not robust against adversarial examples. Extending the study further, we use our new attack to adversarially train RT defense (called AdvRT). However, the attack is still not sufficiently strong, and thus, the AdvRT model is no more robust than its RT counterpart. In the process of formulating our defense and attack, we perform several ablation studies and uncover insights that we hope will broadly benefit scientific communities studying stochastic neural networks and their robustness properties.more » « less
-
null (Ed.)In the last couple of years, several adversarial attack methods based on different threat models have been proposed for the image classification problem. Most existing defenses consider additive threat models in which sample perturbations have bounded L_p norms. These defenses, however, can be vulnerable against adversarial attacks under non-additive threat models. An example of an attack method based on a non-additive threat model is the Wasserstein adversarial attack proposed by Wong et al. (2019), where the distance between an image and its adversarial example is determined by the Wasserstein metric ("earth-mover distance") between their normalized pixel intensities. Until now, there has been no certifiable defense against this type of attack. In this work, we propose the first defense with certified robustness against Wasserstein Adversarial attacks using randomized smoothing. We develop this certificate by considering the space of possible flows between images, and representing this space such that Wasserstein distance between images is upper-bounded by L_1 distance in this flow-space. We can then apply existing randomized smoothing certificates for the L_1 metric. In MNIST and CIFAR-10 datasets, we find that our proposed defense is also practically effective, demonstrating significantly improved accuracy under Wasserstein adversarial attack compared to unprotected models.more » « less
-
We investigate the impact of adversarial attacks against videos on the object detection and classification performance of industrial Machine Learning (ML) application. Specifically, we design the use case with the Intelligent Transportation System that processes real videos recorded by the vehicles’ dash cams and detects traffic lights and road signs in these videos. As the ML system, we employed Rekognition cloud service from Amazon, which is a commercial tool for on-demand object detection in the data of various modalities. To study Rekognition robustness to adversarial attacks, we manipulate the videos by adding the noise to them. We vary the intensity of the added noise by setting the ratio of randomly selected pixels affected by this noise. We then process the videos affected by the noise of various intensity and evaluate the performance demonstrated by Rekognition. As the evaluation metrics, we employ confidence scores provided by Rekognition, and the ratio of correct decisions that shows how successful is Rekognition in recognizing the patterns of interest in the frame. According to our results, even simple adversarial attacks of low intensity (up to 2% of the affected pixels in a single frame) result in a significant Rekognition performance decrease and require additional measures to improve the robustness and satisfy the industrial ML applications’ demands.more » « less