Nanostructured steels are expected to have enhanced irradiation tolerance and improved strength. However, they suffer from poor microstructural stability at elevated temperatures. In this study, Fe–21Cr–5Al–0.026C (wt%) Kanthal D (KD) alloy belonging to a class of (FeCrAl) alloys considered for accident‐tolerant fuel cladding in light‐water reactors is nanostructured using two severe plastic deformation techniques of equal‐channel angular pressing (ECAP) and high‐pressure torsion (HPT), and their thermal stability between 500–700 °C is studied and compared. ECAP KD is found to be thermally stable up to 500 °C, whereas HPT KD is unstable at 500 °C. Microstructural characterization reveals that ECAP KD undergoes recovery at 550 °C and recrystallization above 600 °C, while HPT KD shows continuous grain growth after annealing above 500 °C. Enhanced thermal stability of ECAP KD is from significant fraction (>50%) of low‐angle grain boundaries (GBs) (misorientation angle 2–15°) stabilizing the microstructure due to their low mobility. Small grain sizes, a high fraction (>80%) of high‐angle GBs (misorientation angle >15°) and accordingly a large amount of stored GB energy, serve as the driving force for HPT KD to undergo grain growth instead of recrystallization driven by excess stored strain energy. 
                        more » 
                        « less   
                    
                            
                            Influence of grain size on α′ Cr precipitation in an isothermally aged Fe-21Cr-5Al alloy
                        
                    
    
            Cr-rich αʹprecipitation during aging typically leads to hardening and accordingly embrittlement of FeCrAl alloys, which needs to be suppressed. The influence of grain size on αʹprecipitation was studied by aging coarse-grained (CG), ultra-fine grained (UFG), and nanocrystalline (NC) ferritic Kanthal-D [KD; Fe-21Cr-5Al (wt.%) alloy] at 450, 500 and 550 oC for 500h. After aging at 450 and 500 oC, less hardening was observed in the UFG KD than in CG KD. Atom probe tomography indicated a lower number density and larger sized intragranular αʹ in the UFG versus the CG alloy. The smaller grain size and higher defect (vacancy and dislocation) density in the UFG KD facilitated diffusion and accordingly enhanced precipitation kinetics, leading to coarsening of precipitates, as well as saturation of precipitation at lower temperatures, as compared to those in CG KD. No hardening occurred in UFG and CG KD after aging at 550 oC, indicating that the miscibility gap is between 500 and 550 oC. NC KD exhibited softening after aging owing to grain growth. αʹprecipitation occurred in NC KD aged at 450 oC but not at 500 oC, indicating that miscibility gap is between 450 and 500 oC. Thus, the significantly smaller grain size in NC KD decreased the miscibility gap, as compared to that in CG and UFG KD. This is attributed to the absorption of vacancies by migrating grain boundaries during aging, suppressing αʹ nucleation and enhancing Cr solubility. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2207965
- PAR ID:
- 10519042
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Materialia
- Volume:
- 34
- Issue:
- C
- ISSN:
- 2589-1529
- Page Range / eLocation ID:
- 102047
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Microstructure refinement and optimized alloying can improve metallic alloy performance: stable nanocrystalline (NC) alloys with immiscible second phases, e.g., Cu-Ta, are stronger than unstable NC alloys and their coarse-grained (CG) counterparts, but higher melting point matrices are needed. Hypoeutectic, CG Ni-Y-Zr alloys were produced via arc-melting to explore their potential as high-performance materials. Microstructures were studied to determine phases present, local composition and length scales, while heat treatments allowed investigating microstructural stability. Alloys had a stable, hierarchical microstructure with ~250 nm ultrafine eutectic, ~10 µm dendritic arm spacing and ~1 mm grain size. Hardness and uniaxial compression tests revealed that mechanical properties of Ni-0.5Y-1.8Zr (in wt%) were comparable to Inconel 617 despite the small alloying additions, due to its hierarchical microstructure. Uniaxial compression at 600 °C showed that ternary alloys outperformed Ni-Zr and Ni-Y binary alloys in flow stress and hardening rates, which indicates that the Ni17Y2 phase was an effective reinforcement for the eutectic, which supplemented the matrix hardening due to increased solubility of Zr. Results suggest that ternary Ni-Y-Zr alloys hold significant promise for high temperature applications.more » « less
- 
            null (Ed.)Processing through the application of high-pressure torsion (HPT) provides significant grain refinement in bulk metals at room temperature. These ultrafine-grained (UFG) materials after HPT generally demonstrate exceptional mechanical properties. Recent reports demonstrated the bulk-state reactions for mechanical bonding of dissimilar lightweight metal disks to synthesize hybrid alloy systems by utilizing conventional HPT processing. Accordingly, the present report provides a comprehensive summary of the recent work on processing of several UFG hybrid alloy systems including Al-Mg and Al-Cu by HPT under 6.0 GPa at room temperature and a special emphasis was placed on understanding the evolution of hardness. This study demonstrates a significant opportunity for the application of HPT for a possible contribution to current enhancements in diffusion bonding, welding and mechanical joining technologies as well as to an introduction of hybrid engineering nanomaterials.more » « less
- 
            Structure-Property Relationships of Differently Heat-Treated Binder Jet Printed Co-Cr-Mo BiomaterialThis investigation systematically examines the influence of sintering temperature and aging treatment on the density, microstructure evolution, phase formation, and mechanical properties of a binder jet printed Co-Cr-Mo biomedical alloy. Sintering at 1380 °C for 2 h yielded a near-fully dense part (99.1%) with favorable mechanical properties (up to 325 HV0.1 hardness and up to 693 MPa ultimate tensile strength). The grain size remained unchanged after aging at 800 °C for 24 h (89 ± 21 µm). Aging resulted in increased microhardness and tensile strength due to phase formation (Cr23C6, CrMo, and ε phase), but a significant decrease in ductility. Consequently, the sintered and aged specimen exhibited higher hardness (522 HV0.1), yield strength (641 MPa), and ultimate tensile strength (854 MPa) compared to cast Co-Cr-Mo alloy. Biocompatibility testing with fibroblasts showed a cell viability of 95 ± 2%, indicating that binder jet printing did not affect the biocompatibility of the Co-Cr-Mo alloy. Exemplary printed parts including hip-joint, partial denture, and small-scale knee joint were successfully demonstrated. This study highlights the comparable properties of binder jet Co-Cr-Mo alloy to the cast alloy, affirming its potential for biomedical applications.more » « less
- 
            Solid‐state welding of Al 1043 sheets is achieved via high‐pressure torsion (HPT) processing to produce bulk nanostructured Al disks. A homogeneous nanostructure without segregation is observed, with grain sizes of ≈430–470 nm. Miniature tensile testing, coupled with the digital image correlation (DIC) technique, is employed to determine the room‐temperature tensile deformation behavior, particularly the nonuniform behavior with necking, of the HPT‐bonded ultrafine‐grained (UFG) aluminum, comparing it with annealed coarse‐grained counterpart. The HPT‐bonded UFG Al exhibits a large fraction of post‐necking strain, which is supported by the estimated high strain rate sensitivity value ofm = 0.085, suggesting the delay of local necking leading to tensile fracture. Detailed DIC analysis reveals prolonged diffuse necking, thus delaying local necking, in the HPT‐bonded UFG Al, while the annealed samples show high fractions of local necking during the nonuniform deformation. Moreover, the DIC data illustrate that local necking predominantly occurred at a limited neck zone, maintaining a plateau strain distribution at the out‐of‐neck zone throughout necking deformation toward tensile failure for both annealed and UFG aluminum. The DIC method offers an alternative means to demonstrate the transition in necking behaviors of materials by estimating the plastic lateral contraction exponent.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    