Multi‐component metal–organic frameworks (MOFs) with precisely controlled pore environments are highly desired owing to their potential applications in gas adsorption, separation, cooperative catalysis, and biomimetics. A series of multi‐component MOFs, namely PCN‐900(RE), were constructed from a combination of tetratopic porphyrinic linkers, linear linkers, and rare‐earth hexanuclear clusters (RE6) under the guidance of thermodynamics. These MOFs exhibit high surface areas (up to 2523 cm2 g−1) and unlimited tunability by modification of metal nodes and/or linker components. Post‐synthetic exchange of linear linkers and metalation of two organic linkers were realized, allowing the incorporation of a wide range of functional moieties. Two different metal sites were sequentially placed on the linear linker and the tetratopic porphyrinic linker, respectively, giving rise to an ideal platform for heterogeneous catalysis.
- PAR ID:
- 10519075
- Publisher / Repository:
- ACS
- Date Published:
- Journal Name:
- Chemistry of Materials
- Volume:
- 35
- Issue:
- 23
- ISSN:
- 0897-4756
- Page Range / eLocation ID:
- 10050 to 10059
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Multi‐component metal–organic frameworks (MOFs) with precisely controlled pore environments are highly desired owing to their potential applications in gas adsorption, separation, cooperative catalysis, and biomimetics. A series of multi‐component MOFs, namely PCN‐900(RE), were constructed from a combination of tetratopic porphyrinic linkers, linear linkers, and rare‐earth hexanuclear clusters (RE6) under the guidance of thermodynamics. These MOFs exhibit high surface areas (up to 2523 cm2 g−1) and unlimited tunability by modification of metal nodes and/or linker components. Post‐synthetic exchange of linear linkers and metalation of two organic linkers were realized, allowing the incorporation of a wide range of functional moieties. Two different metal sites were sequentially placed on the linear linker and the tetratopic porphyrinic linker, respectively, giving rise to an ideal platform for heterogeneous catalysis.
-
Abstract The interactions between uranium and non‐innocent organic species are an essential component of fundamental uranium redox chemistry. However, they have seldom been explored in the context of multidimensional, porous materials. Uranium‐based metal–organic frameworks (MOFs) offer a new angle to study these interactions, as these self‐assembled species stabilize uranium species through immobilization by organic linkers within a crystalline framework, while potentially providing a method for adjusting metal oxidation state through coordination of non‐innocent linkers. We report the synthesis of the MOF
NU‐1700 , assembled from U4+‐paddlewheel nodes and catecholate‐based linkers. We propose this highly unusual structure, which contains two U4+ions in a paddlewheel built from four linkers—a first among uranium materials—as a result of extensive characterization via powder X‐ray diffraction (PXRD), sorption, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA), in addition to density functional theory (DFT) calculations. -
Abstract The interactions between uranium and non‐innocent organic species are an essential component of fundamental uranium redox chemistry. However, they have seldom been explored in the context of multidimensional, porous materials. Uranium‐based metal–organic frameworks (MOFs) offer a new angle to study these interactions, as these self‐assembled species stabilize uranium species through immobilization by organic linkers within a crystalline framework, while potentially providing a method for adjusting metal oxidation state through coordination of non‐innocent linkers. We report the synthesis of the MOF
NU‐1700 , assembled from U4+‐paddlewheel nodes and catecholate‐based linkers. We propose this highly unusual structure, which contains two U4+ions in a paddlewheel built from four linkers—a first among uranium materials—as a result of extensive characterization via powder X‐ray diffraction (PXRD), sorption, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA), in addition to density functional theory (DFT) calculations. -
Abstract Metal‐organic frameworks (MOFs) are porous, crystalline materials constructed from organic linkers and inorganic nodes with myriad potential applications in chemical separations, catalysis, and drug delivery. A major barrier to the application of MOFs is their poor scalability, as most frameworks are prepared under highly dilute solvothermal conditions using toxic organic solvents. Herein, we demonstrate that combining a range of linkers with low‐melting metal halide (hydrate) salts leads directly to high‐quality MOFs without added solvent. Frameworks prepared under these ionothermal conditions possess porosities comparable to those prepared under traditional solvothermal conditions. In addition, we report the ionothermal syntheses of two frameworks that cannot be prepared directly under solvothermal conditions. Overall, the user‐friendly method reported herein should be broadly applicable to the discovery and synthesis of stable metal‐organic materials.