Abstract Resonant sensors based on micro- and nano-electro mechanical systems (M/NEMS) are ubiquitous in many sensing applications due to their outstanding performance capabilities, which are directly proportional to the quality factor (Q) of the devices. We address here a recurrent question in the field: do dynamical techniques that modify the effectiveQ(namely parametric pumping and direct drive velocity feedback) affect the performance of said sensors? We develop analytical models of both cases, while remaining in the linear regime, and introduce noise in the system from two separate sources: thermomechanical and amplifier (read-out) noise. We observe that parametric pumping enhances the quality factor in the amplitude response, but worsens it in the phase response on the resonator. In the case of feedback, we find thatQis enhanced in both cases. Then, we establish a solution for the noisy problem with direct drive and parametric pumping simultaneously. We also find that, in the case when thermomechanical noise dominates, no benefit can be obtained from either artificialQ-enhancement technique. However, in the case when amplifier noise dominates, we surprisingly observe that a significant advantage can only be achieved using parametric pumping in the squeezing region.
more »
« less
Noise matching and sensitivity improvement in aluminum nitride nanoelectromechanical resonators via parametric amplification
Parametric amplification of ultrasmall signals from electromechanical transducers directly in the mechanical domain, prior to electrical readout, is an intriguing challenge and is important for both scientific measurements and technologies utilizing micro/nanoelectromechanical systems (MEMS/NEMS). Here, we report on parametric amplification of aluminum nitride (AlN) multimode NEMS resonators (with broad intrinsic dynamic ranges up to 90 dB) for enabling detection of their thermomechanical resonances in both optical and electrical readout schemes simultaneously. The experiments demonstrate that, upon parametric pumping, the electrically transduced thermomechanical motions experience significant amplification, surpassing the extrinsic electronic noise level, while still below the parametric pumping threshold. We achieve noise matching that enables room temperature force sensitivity of 0.46 fN/Hz1/2. We observe high parametric gain up to 650, accompanied by a strong boost (over 3.5×) in the effective quality factor (Qeff, from 9000 to 32 000). These findings underscore the utilities of parametric amplification in noise matching and improving force sensitivity for NEMS transducers and their emerging applications.
more »
« less
- Award ID(s):
- 2103091
- PAR ID:
- 10519143
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 124
- Issue:
- 23
- ISSN:
- 0003-6951
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Quality factor (Q) is an important property of micro- and nano-electromechanical (MEM/NEM) resonators that underlie timing references, frequency sources, atomic force microscopes, gyroscopes, and mass sensors. Various methods have been utilized to tune the effective quality factor of MEM/NEM resonators, including external proportional feedback control, optical pumping, mechanical pumping, thermal-piezoresistive pumping, and parametric pumping. This work reviews these mechanisms and compares the effective Q tuning using a position-proportional and a velocity-proportional force expression. We further clarify the relationship between the mechanical Q, the effective Q, and the thermomechanical noise of a resonator. We finally show that parametric pumping and thermal-piezoresistive pumping enhance the effective Q of a micromechanical resonator by experimentally studying the thermomechanical noise spectrum of a device subjected to both techniques.more » « less
-
Sensitive capacitive transduction of micromechanical resonators can contribute significant electrical dissipation, which degrades the quality factor of the eigenmodes. We theoretically and experimentally demonstrate a scheme for isolating the electrical damping of a mechanical resonator due to Ohmic dissipation in the readout amplifier. The quality factor suppression arising from the amplifier is strongly dependent on the amplifier feedback resistance and parasitic capacitance. By studying the thermomechanical displacement noise spectrum of a doubly clamped micromechanical beam, we confirm that electrical dissipation tunes the actual, not effective, quality factor. Electrical dissipation is an important consideration in the design of sensitive capacitive displacement transducers, which are a key component in resonant sensors and oscillators.more » « less
-
We derive the displacement noise spectrum of a parametrically pumped resonator below the onset for self-excited oscillations. We extend the fluctuation-dissipation response of a thermomechanical-noise-driven resonator to the case of degenerate parametric pumping as a function of pump magnitude and frequency while properly accounting for the quadrature-dependence of the parametric thermal noise squeezing. We use measurements with a microelectromechanical cantilever to corroborate our model.more » « less
-
Field deployment is critical to developing numerous sensitive impedance transducers. Precise, cost-effective, and real-time readout units are being sought to interface these sensitive impedance transducers for various clinical or environmental applications. This paper presents a general readout method with a detailed design procedure for interfacing impedance transducers that generate small fractional changes in the impedance characteristics after detection. The emphasis of the design is obtaining a target response resolution considering the accuracy in real-time. An entire readout unit with amplification/filtering and real-time data acquisition and processing using a single microcontroller is proposed. Most important design parameters, such as the signal-to-noise ratio (SNR), common-mode-to-differential conversion, digitization configuration/speed, and the data processing method are discussed here. The studied process can be used as a general guideline to design custom readout units to interface with various developed transducers in the laboratory and verify the performance for field deployment and commercialization. A single frequency readout unit with a target 8-bit resolution to interface differentially placed transducers (e.g., bridge configuration) is designed and implemented. A single MCU is programmed for real-time data acquisition and sine fitting. The 8-bit resolution is achieved even at low SNR levels of roughly 7 dB by setting the component values and fitting algorithm parameters with the given methods.more » « less