An eight-element oil-filled hydrophone array is used to measure the acoustic field in littoral waters. This prototype array was deployed during an experiment between Jeffrey’s Ledge and the Stellwagen Bank region off the coast of Rockport, Massachusetts USA. During the experiment, several humpback whale vocalizations, distant ship tonals and high frequency conventional echosounder pings were recorded. Visual confirmation of humpback moving in bearing relative to the array verifies the directional sensing from array beamforming. During deployment, the array is towed at speeds varying from 4-7 kts in water depths of roughly 100 m with conditions at sea state 2 to 3. This array system consists of a portable winch with array, tow cable and 3 water-resistant boxes housing electronics. This system is deployed and operated by 2 crew members onboard a 13 m commercial fishing vessel during the experiment. Non-acoustic sensor (NAS) information is obtained to provide depth, temperature, and heading data using commercial off the shelf (COTS) components utilizing RS485/232 data communications. Acoustic data sampling was performed at 8 kHz, 30 kHz and 100 kHz with near real-time processing of data and enhanced Signal to Noise Ratio (SNR) from beamforming. The electrical system components are deployed with 3 stackedmore »
This content will become publicly available on January 1, 2024
Highly Sensitive Readout Interface for Real-Time Differential Precision Measurements with Impedance Biosensors
Field deployment is critical to developing numerous sensitive impedance transducers. Precise, cost-effective, and real-time readout units are being sought to interface these sensitive impedance transducers for various clinical or environmental applications. This paper presents a general readout method with a detailed design procedure for interfacing impedance transducers that generate small fractional changes in the impedance characteristics after detection. The emphasis of the design is obtaining a target response resolution considering the accuracy in real-time. An entire readout unit with amplification/filtering and real-time data acquisition and processing using a single microcontroller is proposed. Most important design parameters, such as the signal-to-noise ratio (SNR), common-mode-to-differential conversion, digitization configuration/speed, and the data processing method are discussed here. The studied process can be used as a general guideline to design custom readout units to interface with various developed transducers in the laboratory and verify the performance for field deployment and commercialization. A single frequency readout unit with a target 8-bit resolution to interface differentially placed transducers (e.g., bridge configuration) is designed and implemented. A single MCU is programmed for real-time data acquisition and sine fitting. The 8-bit resolution is achieved even at low SNR levels of roughly 7 dB by setting the component values more »
- Award ID(s):
- 2042683
- Publication Date:
- NSF-PAR ID:
- 10392793
- Journal Name:
- Biosensors
- Volume:
- 13
- Issue:
- 1
- Page Range or eLocation-ID:
- 77
- ISSN:
- 2079-6374
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract
<p>This data set for the manuscript entitled "Design of Peptides that Fold and Self-Assemble on Graphite" includes all files needed to run and analyze the simulations described in the this manuscript in the molecular dynamics software NAMD, as well as the output of the simulations. The files are organized into directories corresponding to the figures of the main text and supporting information. They include molecular model structure files (NAMD psf or Amber prmtop format), force field parameter files (in CHARMM format), initial atomic coordinates (pdb format), NAMD configuration files, Colvars configuration files, NAMD log files, and NAMD output including restart files (in binary NAMD format) and trajectories in dcd format (downsampled to 10 ns per frame). Analysis is controlled by shell scripts (Bash-compatible) that call VMD Tcl scripts or python scripts. These scripts and their output are also included.</p> <p>Version: 2.0</p> <p>Changes versus version 1.0 are the addition of the free energy of folding, adsorption, and pairing calculations (Sim_Figure-7) and shifting of the figure numbers to accommodate this addition.</p> <p><br /> Conventions Used in These Files<br /> ===============================</p> <p>Structure Files<br /> ----------------<br /> - graph_*.psf or sol_*.psf (original NAMD (XPLOR?) format psf file including atom details (type, charge, mass), -
The DeepLearningEpilepsyDetectionChallenge: design, implementation, andtestofanewcrowd-sourced AIchallengeecosystem Isabell Kiral*, Subhrajit Roy*, Todd Mummert*, Alan Braz*, Jason Tsay, Jianbin Tang, Umar Asif, Thomas Schaffter, Eren Mehmet, The IBM Epilepsy Consortium◊ , Joseph Picone, Iyad Obeid, Bruno De Assis Marques, Stefan Maetschke, Rania Khalaf†, Michal Rosen-Zvi† , Gustavo Stolovitzky† , Mahtab Mirmomeni† , Stefan Harrer† * These authors contributed equally to this work † Corresponding authors: rkhalaf@us.ibm.com, rosen@il.ibm.com, gustavo@us.ibm.com, mahtabm@au1.ibm.com, sharrer@au.ibm.com ◊ Members of the IBM Epilepsy Consortium are listed in the Acknowledgements section J. Picone and I. Obeid are with Temple University, USA. T. Schaffter is with Sage Bionetworks, USA. E. Mehmet is with the University of Illinois at Urbana-Champaign, USA. All other authors are with IBM Research in USA, Israel and Australia. Introduction This decade has seen an ever-growing number of scientific fields benefitting from the advances in machine learning technology and tooling. More recently, this trend reached the medical domain, with applications reaching from cancer diagnosis [1] to the development of brain-machine-interfaces [2]. While Kaggle has pioneered the crowd-sourcing of machine learning challenges to incentivise data scientists from around the world to advance algorithm and model design, the increasing complexity of problem statements demands of participants to be expert datamore »
-
With increasing needs of fast and reliable commu- nication between devices, wireless communication techniques are rapidly evolving to meet such needs. Multiple input and output (MIMO) systems are one of the key techniques that utilize multiple antennas for high-throughput and reliable communication. However, increasing the number of antennas in communication also adds to the complexity of channel esti- mation, which is essential to accurately decode the transmitted data. Therefore, development of accurate and efficient channel estimation methods is necessary. We report the performance of machine learning-based channel estimation approaches to enhance channel estimation performance in high-noise envi- ronments. More specifically, bit error rate (BER) performance of 2 × 2 and 4 × 4 MIMO communication systems with space- time block coding model (STBC) and two neural network-based channel estimation algorithms is analyzed. Most significantly, the results demonstrate that a generalized regression neural network (GRNN) model matches BER results of a known-channel communication for 4 × 4 MIMO with 8-bit pilots, when trained in a specific signal to noise ratio (SNR) regime. Moreover, up to 9dB improvement in signal-to-noise ratio (SNR) for a target BER is observed, compared to least square (LS) channel estimation, especially when the model is trained inmore »
-
Schmidt, Dirk ; Schreiber, Laura ; Vernet, Elise (Ed.)The W. M. Keck Observatory Adaptive Optics (AO) facilities have been operating with a Field Programmable Gate Array (FPGA) based real time controller (RTC) since 2007. The RTC inputs data from various AO wavefront and tip/tilt sensors; and corrects image blurring from atmospheric turbulence via deformable and tip/tilt mirrors. Since its commissioning, the Keck I and Keck II RTCs have been upgraded to support new hardware such as pyramid wavefront and infrared tip-tilt sensors. However, they are reaching the limits of their capabilities in terms of processing bandwidth and the ability to interface with new hardware. Together with the Keck All-sky Precision Adaptive optics (KAPA) project, a higher performance and a more reliable RTC is needed to support next generation capabilities such as laser tomography and sensor fusion. This paper provides an overview of the new RTC system, developed with our contractor/collaborators (Microgate, Swinburne University of Technology and Australian National University), and the initial on-sky performance. The upgrade includes an Interface Module to interface with the wavefront sensors and controlled hardware, and a Graphical Processing Unit (GPU) based computational engine to meet the system’s control requirements and to provide a flexible software architecture to allow future algorithms development and capabilities.more »