skip to main content


Search for: All records

Award ID contains: 2103091

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Parametric amplification of ultrasmall signals from electromechanical transducers directly in the mechanical domain, prior to electrical readout, is an intriguing challenge and is important for both scientific measurements and technologies utilizing micro/nanoelectromechanical systems (MEMS/NEMS). Here, we report on parametric amplification of aluminum nitride (AlN) multimode NEMS resonators (with broad intrinsic dynamic ranges up to 90 dB) for enabling detection of their thermomechanical resonances in both optical and electrical readout schemes simultaneously. The experiments demonstrate that, upon parametric pumping, the electrically transduced thermomechanical motions experience significant amplification, surpassing the extrinsic electronic noise level, while still below the parametric pumping threshold. We achieve noise matching that enables room temperature force sensitivity of 0.46 fN/Hz1/2. We observe high parametric gain up to 650, accompanied by a strong boost (over 3.5×) in the effective quality factor (Qeff, from 9000 to 32 000). These findings underscore the utilities of parametric amplification in noise matching and improving force sensitivity for NEMS transducers and their emerging applications.

     
    more » « less
    Free, publicly-accessible full text available June 3, 2025
  2. Free, publicly-accessible full text available April 1, 2025
  3. Free, publicly-accessible full text available January 21, 2025
  4. Free, publicly-accessible full text available October 1, 2024