skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Revolutionizing Robotics
Ask your students what they think of when they hear the word robotics. Most students likely imagine a large, clunky machine used in a manufacturing plant or construction site. Other students may mention modern humanoid robots that appear in popular culture like C3PO from the Star Wars franchise. No matter the response, there is a good chance that nearly all students will mention a robot made of hard materials like metal. This article describes the introduction of a new field, soft robotics, into high school classrooms to broaden students’ perceptions of how robots can be used and who works on robotics. Soft robots are made from compliant materials, such as rubber or textiles, and have a wide variety of applications in the medical field, space exploration, and food distribution. This field provides an excellent opportunity to expand students’ view of robotics while learning how to think and design like an engineer.  more » « less
Award ID(s):
2106286
PAR ID:
10519177
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
NSTA
Date Published:
Journal Name:
The Science Teacher
Volume:
90
Issue:
5
ISSN:
0036-8555
Page Range / eLocation ID:
44 to 49
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The field of soft robotics is grounded on the idea that, due to their inherent compliance, soft robots can safely interact with the environment. Thus, the development of effective planning and control pipelines for soft robots should incorporate reliable robot-environment interaction models. This strategy enables soft robots to effectively exploit contacts to autonomously navigate and accomplish tasks in the environment. However, for a class of soft robots, namely vine-inspired, tip-extending or "vine" robots, such interaction models and the resulting planning and control strategies do not exist. In this paper, we analyze the behavior of vine robots interacting with their environment and propose an obstacle-interaction model that characterizes the bending and wrinkling deformation induced by the environment. Starting from this, we devise a novel obstacle-interaction planning method for these robots. We show how obstacle interactions can be effectively leveraged to enlarge the set of reachable workspace for the robot tip, and verify our findings with both simulated and real experiments. Our work improves the capabilities of this new class of soft robot, helping to advance the field of soft robotics. 
    more » « less
  2. If you ever did the egg drop challenge, you know it is hard to build something that can protect a fragile egg from crashing into the ground and breaking. Engineers are building soft robots called tensegrity robots, which are designed to survive harsh crashes. The word tensegrity comes from “tension” and “integrity”. It means the robot is made of stiff bars held together with stretchy cables. This flexible structure helps a tensegrity robot absorb the impact from crashes. Someday, these robots might be used to explore dangerous places like deep caves or other planets. These robots could fall off cliffs or into craters. Right now, engineers are making tensegrity robots better and easier to control. In this article, we will explain how tensegrity robots work. We will discuss their advantages, their disadvantages, and what they can be used for. 
    more » « less
  3. Abstract Diverse and adaptable modes of complex motion observed at different scales in living creatures are challenging to reproduce in robotic systems. Achieving dexterous movement in conventional robots can be difficult due to the many limitations of applying rigid materials. Robots based on soft materials are inherently deformable, compliant, adaptable, and adjustable, making soft robotics conducive to creating machines with complicated actuation and motion gaits. This review examines the mechanisms and modalities of actuation deformation in materials that respond to various stimuli. Then, strategies based on composite materials are considered to build toward actuators that combine multiple actuation modes for sophisticated movements. Examples across literature illustrate the development of soft actuators as free‐moving, entirely soft‐bodied robots with multiple locomotion gaits via careful manipulation of external stimuli. The review further highlights how the application of soft functional materials into robots with rigid components further enhances their locomotive abilities. Finally, taking advantage of the shape‐morphing properties of soft materials, reconfigurable soft robots have shown the capacity for adaptive gaits that enable transition across environments with different locomotive modes for optimal efficiency. Overall, soft materials enable varied multimodal motion in actuators and robots, positioning soft robotics to make real‐world applications for intricate and challenging tasks. 
    more » « less
  4. You can print anything... or can you? 3D printing is an exciting new technology that promises to very quickly create anything people can design. Scientists who want to make soft robots, like Baymax from Big Hero 6TM, are excited about 3D printers. Our team uses 3D printing to make molds to produce soft robots. Molding is like using a muffin tin to make cupcakes. But can you make anything with 3D printing or are there times when 3D-printed molds do not work? Just like a cupcake liner, 3D-printed molds leave ridges, like a Ruffles potato chip, in soft robots. These ridges are a weak point where cracks can form, causing the robot to pop like a balloon. To prevent this, we sometimes need to make our robots using very smooth molds made from metal. This article talks about when and how 3D printing is useful in making soft robots. 
    more » « less
  5. Soft robotics enriches the robotic functionalities by engineering soft materials and electronics toward enhanced compliance, adaptivity, and friendly human machine. This decade has witnessed extraordinary progresses and benefits in scaling down soft robotics to small scale for a wide range of potential and promising applications, including medical and surgical soft robots, wearable and rehabilitation robots, and unconstructed environments exploration. This perspective highlights recent research efforts in miniature soft robotics in a brief and comprehensive way in terms of actuation, powering, designs, fabrication, control, and applications in four sections. Section 2 discusses the key aspects of materials selection and structural designs for small‐scale tethered and untethered actuation and powering, including fluidic actuation, stimuli‐responsive actuation, and soft living biohybrid materials, as well as structural forms from 1D to 3D. Section 3 discusses the advanced manufacturing techniques at small scales for fabricating miniature soft robots, including lithography, mechanical self‐assembly, additive manufacturing, tissue engineering, and other fabrication methods. Section 4 discusses the control systems used in miniature robots, including off‐board/onboard controls and artificial intelligence‐based controls. Section 5 discusses their potential broad applications in healthcare, small‐scale objects manipulating and processing, and environmental monitoring. Finally, outlooks on the challenges and opportunities are discussed. 
    more » « less